المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اقليم حشائش السافانا
2024-11-05
اقليم الغابات المعتدلة الدافئة
2024-11-05
ماشية اللحم في كازاخستان (النوع كازاك ذو الرأس البيضاء)
2024-11-05
الانفاق من طيبات الكسب
2024-11-05
امين صادق واخر خائن منحط
2024-11-05
اماني اليهود بدخول الجنة
2024-11-05


Habiro Move  
  
1693   03:53 مساءً   date: 16-6-2021
Author : Habiro, K.
Book or Source : "Claspers and Finite Type Invariants of Links." Geom. Topol. 4
Page and Part : ...


Read More
Date: 26-5-2021 1396
Date: 29-7-2021 959
Date: 22-7-2021 1828

Habiro Move

HabiroMove

A knot move illustrated above. Two knots cannot be distinguished using Vassiliev invariants of order <=n iff they are related by a sequence of such moves (Habiro 2000). There is a correspondence between the Habiro move and solution of the baguenaudier puzzle (Przytycki and Sikora 2000).


REFERENCES:

Habiro, K. "Claspers and Finite Type Invariants of Links." Geom. Topol. 4, 1-83, 2000.

Przytycki, J. H. and Sikora, A. S. "Topological Insights from the Chinese Rings." 21 Jul 2000. https://arxiv.org/abs/math.GT/0007134.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.