المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

الفتاوى الشّاذة من الكتاب والسنّة
26-05-2015
شعر لعبد البر ابن فرسان
2023-02-06
المنظمة الدولية للمواصفات والمقاييـس ISO
11-10-2020
أبو زُبيد الطائي
28-12-2015
Light Flashes
13-10-2016
تتدرك الاحماض النووية المتناولة مع القوت الى بورينات وبيريميدينات
1-12-2021

Interval Stationary Point Process  
  
1502   04:48 مساءً   date: 10-3-2021
Author : Daley, D. J. and Vere-Jones, D.
Book or Source : An Introduction to the Theory of Point Processes Volume I: Elementary Theory and Methods, 2nd ed. New York: Springer, 2003.
Page and Part : ...


Read More
Date: 23-3-2021 1589
Date: 11-3-2021 1703
Date: 4-5-2021 4086

Interval Stationary Point Process

A point process N on R is said to be interval stationary if for every r=1,2,3,... and for all integers i_i,...,i_r, the joint distribution of

 {tau_(i_1+k),...,tau_(i_r+k)}

does not depend on kk in Z. Here, tau_(i_j+k) subset R is an interval for all j=1,2,...,r.

As pointed out in a variety of literature (e.g., Daley and Vere-Jones 2002, pp 45-46), the notion of an interval stationary point process is intimately connected to (though fundamentally different from) the idea of a stationary point process in the Borel set sense of the term. Worth noting, too, is the difference between interval stationarity and other notions such as simple/crude stationarity.

Though it has been done, it is more difficult to extend to R^d the notion of interval stationarity; doing so requires a significant amount of additional machinery and reflects, overall, the significantly-increased structural complexity of higher-dimensional Euclidean spaces (Daley and Vere-Jones 2007).


REFERENCES:

Daley, D. J. and Vere-Jones, D. An Introduction to the Theory of Point Processes Volume I: Elementary Theory and Methods, 2nd ed. New York: Springer, 2003.

Daley, D. J. and Vere-Jones, D. An Introduction to the Theory of Point Processes Volume II: General Theory and Structure, 2nd ed. New York: Springer, 2007.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.