المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

لا مشكلة بين الإمام علي [عليه السلام] وعمر
13-11-2016
مبحث جواز إجتماع الأمر والنهي وعدمه‏
5-7-2020
الإنســـلاخ
18-2-2016
الحكومة الواقعيّة والحكومة الظاهريّة
11-9-2016
انواع الترب الرئيسية في قارة اوربا- تربة التشرنوزم
1-11-2016
Six-Membered Rings
21-12-2015

Intersection of two straight lines  
  
1736   02:03 صباحاً   date: 9-3-2021
Author : Garnett P. Williams
Book or Source : Chaos Theory Tamed
Page and Part : 43


Read More
Date: 9-3-2021 1653
Date: 30-12-2016 3637
Date: 24-11-2020 1266

Intersection of two straight lines

Another interpolation situation involves two known points in a two-dimensional phase space, an assumed straight line between them, and another straight line that intersects the first line (Fig. 1). The job is to estimate the coordinates of the point where the two lines intersect. The two points (e.g. A and B in Fig. 1) were measured at successive times, so the problem again boils down to estimating coordinate values at some intermediate time.

Figure 1: Intersection of two straight lines in two-dimensional space.

The solution is straightforward, although it requires knowing the parameter values in the equations of both lines. Any of the three methods discussed above can give those parameters. Obtaining them leaves two equations (one for each line), with unknown x and y values in each equation. Exactly at (and only at) the point of intersection, the two equations give the same x and y values. Hence, for that particular point the x and y values (or equivalent expressions of each) are interchangeable between the two equations. We can then get the desired coordinates by equating one equation to the other, that is, by solving them simultaneously.
To illustrate with Figure 1, say the equations of the two intersecting straight lines (with parameters determined by any of the methods explained earlier) are: y=-1.06+1.7x and y=0.89+0.57x. To find the unique pair of x and y values that are common to both lines, we solve the equations simultaneously. We can do that either by equating the two or by subtracting the lower equation from the upper. Either of those approaches eliminates y. For our example, that leaves 0=-1.95+1.13x, or x=1.73. We then use the x value and the equation of either line to get y. For instance, with the second equation we have y=0.89+0.57 (1.73) or y=1.88. Hence, the two lines cross at x=1.73, y=1.88.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.