المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


Covalent Binding method of immobilisation  
  
1418   11:55 صباحاً   date: 8-1-2021
Author : John M Walker and Ralph Rapley
Book or Source : Molecular Biology and Biotechnology 5th Edition
Page and Part :


Read More
Date: 4-1-2021 1634
Date: 5-1-2021 1183
Date: 8-1-2021 1314

Covalent Binding method of immobilisation


This method of immobilisation involves the formation of a covalent bond between a biocatalyst and support material . The bond is normally formed between functional groups present on the surface of a support material and functional groups on amino acid residues on the surface of an enzyme. A number of amino acid functional groups are suitable for participation in covalent bond formation. Those most often involved are the amino group (NH2) of lysine or arginine, the carboxyl group (CO2H) of aspartic acid or glutamic acid, the hydroxyl group (OH) of serine or threonine and threshold group (SH) of cysteine.
Many varied support materials are available for covalent binding and the extensive range of supports available reflects the fact that there is no ideal support material . Therefore, the advantages and disadvantages of a given support are taken into account when considering possible procedures for a given biocatalyst immobilisation. Many factors may influence the selection of a particular support and research has shown that hydrophilicity (water attraction) is the most important factor for maintaining enzyme activity in a support material environment. Consequently, polysaccharide polymers, which are very hydrophilic, are popular support materials for enzyme immobilisation.
For example, cellulose, dextran, starch and agarose are often used for enzyme immobilisation. The sugar residues in these polymers contain hydroxyl (OH) groups that are suitable for chemical activation to provide covalent bond formation (Figure 1). The OH groups also form 
hydrogen bonds with water molecules and thereby create a hydrophilic environment within a support material.

Figure 1. Covalent immobilisation by activation of a carbohydrate support material with CNBr and coupling of an enzyme (via free amino group) to the activated support to form an isourea bond.


Polysaccharide supports do have a weakness in that they are susceptible to microbial/fungal disintegration and organic solvents used in some reaction processes can cause shrinkage of polysaccharide gels.
Support materials are usually used in bead form  and there are many procedures for coupling an enzyme and a support in a covalent bond. However, most reactions fall into the following main categories:
- formation of an isourea linkage;
- formation of a diazo linkage;
- formation of a peptide bond;
- an alkylation reaction.
It is important to choose a reaction method that will not inactivate an enzyme by reacting with amino acid residues at the enzyme active site. Hence if an enzyme employs a carboxyl group at its active site  for participation in catalysis, then it is wise to choose a reaction method that involves amino groups for covalent bond formation with a support.Basically two steps are involved in covalent binding of enzymes to support materials.
First, functional groups on a support material are activated by a specific chemical reagent such as cyanogen bromide (CNBr), and second, an enzyme is added in a coupling reaction to form a covalent bond with the activated support material. Normally an activation reaction is designed to make functional groups on a support strongly electrophilic (electron deficient). In the coupling reaction, these groups will react with strong nucleophiles (electron donating), such as the amino (NH2) functional groups of certain amino acids on the surface of an enzyme, to form a covalent bond. It is possible to vary the coupling conditions to allow single-point or multiple-point attachment  and  influence the stability of an immobilised enzyme .
In the CNBr method, an enzyme and support are joined via an isourea linkage. In carbodiimide activation, a support material should have a carboxyl (CO2H) functional group and an enzyme and support are joined via a peptide bond. If the support material contains an aromatic amino functional group, it can be diazotised using nitrous acid. Subsequent addition of enzyme leads to the formation of a diazo linkage between a reactive diazo group on a support and the ring structure of an aromatic amino acid such as tyrosine.
It is important to recognise that no method of immobilisation is restricted to a particular type of support material and that an extremely large number of permutations are possible between methods of immobilisation and support materials. This is possible by chemical modification of normal functional groups on a support material to produce a range of derivatives containing different functional groups. For example, the normal functional group in cellulose is the OH of glucose and chemical modifications of these groups have produced a range of cellulose derivatives such as AE-cellulose (aminoethyl), CM-cellulose (carboxymethyl) and DEAE-cellulose (diethylaminoethyl). Thus chemical modification increases the range of immobilisation methods that can be used for a given support material.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.