Read More
Date: 20-5-2020
1839
Date: 6-12-2020
769
Date: 3-3-2020
533
|
The function which gives the smallest integer , shown as the thick curve in the above plot. Schroeder (1991) calls the ceiling function symbols the "gallows" because of the similarity in appearance to the structure used for hangings. The name and symbol for the ceiling function were coined by K. E. Iverson (Graham et al. 1994).
The ceiling function is implemented in the Wolfram Language as Ceiling[z], where it is generalized to complex values of as illustrated above.
Although some authors used the symbol to denote the ceiling function (by analogy with the older notation for the floor function), this practice is strongly discouraged (Graham et al. 1994, p. 67). Also strongly discouraged is the use of the symbol to denote the ceiling function (e.g., Harary 1994, pp. 91, 93, and 118-119), since this same symbol is more commonly used to denote the fractional part of .
Since usage concerning fractional part/value and integer part/value can be confusing, the following table gives a summary of names and notations used. Here, S&O indicates Spanier and Oldham (1987).
notation | name | S&O | Graham et al. | Wolfram Language |
ceiling function | -- | ceiling, least integer | Ceiling[x] | |
congruence | -- | -- | Mod[m, n] | |
floor function | floor, greatest integer, integer part | Floor[x] | ||
fractional value | fractional part or | SawtoothWave[x] | ||
fractional part | no name | FractionalPart[x] | ||
integer part | no name | IntegerPart[x] | ||
nearest integer function | -- | -- | Round[x] | |
quotient | -- | -- | Quotient[m, n] |
REFERENCES:
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 2, 1991.
Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Integer Functions." Ch. 3 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 67-101, 1994.
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
Iverson, K. E. A Programming Language. New York: Wiley, p. 12, 1962.
Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York: W. H. Freeman, p. 57, 1991.
Spanier, J.; Myland, J.; and Oldham, K. B. An Atlas of Functions, 2nd ed. Washington, DC: Hemisphere, 1987.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|