Read More
Date: 9-11-2020
![]()
Date: 27-11-2019
![]()
Date: 28-9-2020
![]() |
A Pythagorean quadruple is a set of positive integers ,
,
, and
that satisfy
![]() |
(1) |
For positive even and
, there exist such integers
and
; for positive odd
and
, no such integers exist (Oliverio 1996).
Examples of primitive Pythagorean quadruples include ,
,
,
,
, and
.
Oliverio (1996) gives the following generalization of this result. Let , where
are integers, and let
be the number of odd integers in
. Then iff
(mod 4), there exist integers
and
such that
![]() |
(2) |
A set of Pythagorean quadruples is given by
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where ,
, and
are integers (Mordell 1969). This does not, however, generate all solutions. For instance, it excludes (36, 8, 3, 37).
REFERENCES:
Carmichael, R. D. Diophantine Analysis. New York: Wiley, 1915.
Dutch, S. "Power Page: Pythagorean Quartets." https://www.uwgb.edu/dutchs/RECMATH/rmpowers.htm#pythquart.
Mordell, L. J. Diophantine Equations. London: Academic Press, 1969.
Oliverio, P. "Self-Generating Pythagorean Quadruples and -tuples." Fib. Quart. 34, 98-101, 1996.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|