المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05

عمليات الخدمة الزراعية للفجل
28-4-2021
عائد الاستثمار ومقومات قرار الاستثمار
23-3-2018
تقسيم النيماتودا (مجموعات النيماتودا Groups of nematodes)
7-5-2018
Noncompetitive inhibition
7-9-2021
القياس - طبقات الاساس الركامية
2023-09-23
Nørlund Polynomial
21-9-2019

Continued Fraction Constants  
  
605   05:24 مساءً   date: 28-4-2020
Author : Borwein, J.; Bailey, D.; and Girgensohn, R.
Book or Source : Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters
Page and Part : ...


Read More
Date: 16-7-2020 1355
Date: 25-10-2020 3157
Date: 13-1-2021 745

Continued Fraction Constants

A number of closed-form constants can be obtained for generalized continued fractions having particularly simple partial numerators and denominators.

The Ramanujan continued fractions provide a fascinating class of continued fraction constants. The Trott constants are unexpected constants whose partial numerators and denominators correspond to their decimal digits (though to achieve this, it is necessary to allow some partial numerators to equal 0).

The first in a series of other famous continued fraction constants is the infinite regular continued fraction

C_1 = K_(n=1)^(infty)1/n

(1)

= 1/(1+1/(2+1/(3+1/(4+1/(5+...))))).

(2)

The first few convergents A_n/B_n of the constant are 0, 1, 2/3, 7/10, 30/43, 157/225, 972/1393, 6961/9976, ... (OEIS A001053 and A001040).

Both numerator A_n and denominator B_n satisfy the recurrence relation

 f_(n+1)=nf_n+f_(n-1),

(3)

where A_n has the initial conditions A_1=0A_2=1 and B_n has the initial conditions B_0=0B_1=1. These can be solved exactly to yield

A_n = (I_n(-2)K_1(2)-I_1(-2)K_n(2))/(I_2(-2)K_1(2)-I_1(-2)K_2(2))

(4)

= 2[(-1)^nI_n(2)K_1(2)+I_1(2)K_n(2)]

(5)

B_n = (I_n(-2)K_0(2)-I_0(-2)K_n(2))/(I_1(-2)K_0(2)-I_0(-2)K_1(2))

(6)

= 2[(-1)^(n-1)I_n(2)K_0(2)+I_0(2)K_n(2)],

(7)

where I_n(x) is a modified Bessel function of the first kind and K_n(x) is a modified Bessel function of the second kind. Therefore, as n->infty, the infinite continued fraction is given by

C_1 = lim_(n->infty)(A_n)/(B_n)

(8)

= (I_1(2))/(I_0(2))

(9)

= 0.697774658...

(10)

(OEIS A052119; Lehmer 1973, Rabinowitz 1990; Borwein et al. 2004, p. 35).

The related constant defined by the generalized continued fraction

C_2 = K_(n=1)^(infty)n/n

(11)

= 1/(1+2/(2+3/(3+4/(4+5/(5+...)))))

(12)

has nth convergent is given by

 (A_n)/(B_n)=[(Gamma(n+2))/(!(n+1))-1]^(-1),

(13)

where Gamma(n) is the gamma function and !n is the subfactorial. The first few convergents A_n/B_n are therefore 1, 1/2, 3/5, 11/19, 53/91, 103/177, ... (OEIS A053557 and A103816). As n->infty, this gives the value

C_2 = 1/(e-1)

(14)

= 0.581976...

(15)

(OEIS A073333).

Another similar continued fraction constant that can be computed in closed form is

C_3 = 1+K_(n=1)^(infty)n/1

(16)

= 1+1/(1+2/(1+3/(1+4/(1+5/(6+...)))))

(17)

= sqrt(2/(epi))[erfc(2^(-1/2))]^(-1)

(18)

= 1.5251352...

(19)

(OEIS A111129), where erfc is the complementary error function. No closed form is known for the convergents, but for n=1, 2, ..., the first few convergents are 1, 1/3, 2/3, 4/9, 7/12, 19/39, 68/123, ... (OEIS A225435 and A225436).

Another closed-form continued fraction is given by

C_4 = 1+K_(n=1)^(infty)(2n)/(2n+1)

(20)

= 1+2/(3+4/(5+6/(7+8/(9+(10)/(11+...)))))

(21)

= (sqrt(e)-1)^(-1)

(22)

= 1.5414940...

(23)

(OEIS A113011). The first few convergents are 5/3, 29/19, 233/151, 2329/1511, 27949/18131, 78257/50767, ... (OEIS A113012 and A113013).

The general infinite continued fraction [b_0;b_1,b_2...] with partial quotients that are in arithmetic progression is given by

 [A+D,A+2D,A+3D,...]=(I_(A/D)(2/D))/(I_(1+A/D)(2/D))

(24)

(Schroeppel 1972) for real A and D!=0.

Perron (1954-57) discusses continued fractions having terms even more general than the arithmetic progression and relates them to various special functions. He does not, however, appear to specifically consider equation (24).


REFERENCES:

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, pp. 34-35, 2004.

Finch, S. R. "Euler-Gompertz Constant." §6.2 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 423-428, 2003.

Guy, R. K. "Review: The Mathematics of Plato's Academy." Amer. Math. Monthly 97, 440-443, 1990.

Lehmer, D. H. "Continued Fractions Containing Arithmetic Progressions." Scripta Math. 29, 17-24, 1973.

Perron, O. Die Lehre von den Kettenbrüchen, 3. verb. und erweiterte Aufl. Stuttgart, Germany: Teubner, 1954-57.

Rabinowitz, S. Problem E3264. "Asymptotic Estimates from Convergents of a Continued Fraction." Amer. Math. Monthly 97, 157-159, 1990.

Schroeppel, R. Item 99 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 36, Feb. 1972. https://www.inwap.com/pdp10/hbaker/hakmem/cf.html#item99.

Sloane, N. J. A. Sequences A001040/M2863, A001053/M1783, A052119, A053557, A073333, A103816, A111129, A113011, A113012, A113013, A225435, and A2225436 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.