المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تربية الماشية في جمهورية مصر العربية
2024-11-06
The structure of the tone-unit
2024-11-06
IIntonation The tone-unit
2024-11-06
Tones on other words
2024-11-06
Level _yes_ no
2024-11-06
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05

تحليل وظائف الكلى Kidney Functions
30-1-2017
الضحَّاك بن مُخلَّد
22-06-2015
شرط العدالة واعتباره في الْمُسْتَحِقين للزكاة
16-8-2017
الاميدات
2023-08-29
زكار أبو سليمان
3-9-2017
تعريف الكفالة
23-4-2019

Planck,s Radiation Function  
  
616   03:35 مساءً   date: 22-4-2020
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Planck,s Radiation Function." §27.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York:...
Page and Part : ...


Read More
Date: 1-11-2019 718
Date: 26-4-2020 693
Date: 5-9-2020 766

Planck's Radiation Function

Planck

Planck's's radiation function is the function

 f(x)=(15)/(pi^4)1/(x^5(e^(1/x)-1)),

(1)

which is normalized so that

 int_0^inftyf(x)dx=1.

(2)

However, the function is sometimes also defined without the numerical normalization factor of 15/pi^4 (e.g., Abramowitz and Stegun 1972, p. 999).

The first and second raw moments are

= (30zeta(3))/(pi^4)

(3)

= 5/(2pi^2),

(4)

where zeta(3) is Apéry's constant, but higher order raw moments do not exist since the corresponding integrals do not converge.

It has a maximum at x approx 0.201405 (OEIS A133838), where

(5)

and inflection points at x approx 0.11842 (OEIS A133839) and x approx 0.283757 (OEIS A133840), where

(6)

 


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). "Planck's Radiation Function." §27.2 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 999, 1972.

Sloane, N. J. A. Sequences A133838, A133839, A133840 in "The On-Line Encyclopedia of Integer Sequences."




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.