المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27


Solidus  
  
861   04:42 مساءً   date: 20-11-2019
Author : Arfken, G
Book or Source : Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.
Page and Part : ...


Read More
Date: 17-12-2020 745
Date: 25-1-2021 693
Date: 15-1-2020 836

Solidus

The diagonal slash "/" used as the bar between numerator and denominator of an in-line fraction (Bringhurst 1997, p. 284). The solidus is also called a diagonal.

Special care is needed when interpreting the meaning of a solidus in in-line math because of the notational ambiguity in expressions such as a/bc. Whereas in many textbooks, "a/bc" is intended to denote a/(bc), taken literally or evaluated in a symbolic mathematics languages such as the Wolfram Language, it means (a/b)×c. For clarity, parentheses should therefore always be used when delineating compound denominators.

Common examples of failure to parenthesize include E/kT (where E is energy, k is Boltzmann's constant, and T is temperature; Arfken 1985, p. 950), its variant c/lambdaT (where c is a constant and lambda is wavelength; Weast 1981, pp. F-109 and F-111), the exponent -(x-mu)^2/2sigma^2 in the normal distribution (where sigma is the standard deviation; Hastings 2000, p. 217). Other miscellaneous examples occur even in the standard references for computer math systems (e.g., Wolfram 2003, pp. 776, 779, and 787).


REFERENCES:

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, 1985.

Bringhurst, R. The Elements of Typographic Style, 2nd ed. Point Roberts, WA: Hartley and Marks, p. 284, 1997.

Grossman, J. (Managing Ed.). "Solidus." §5.122 in The Chicago Manual of Style, 14th ed. Chicago, IL: University of Chicago Press, p. 189, 1993.

Hastings, K. Introduction to Probability with Mathematica. Boca Raton: Chapman & Hall/CRC, 2000.

Weast, R. C. (Ed.). Handbook of Chemistry and Physics, 61st ed. Boca Raton, FL: CRC Press, 1981.

Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, 2003.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.