Read More
Date: 18-7-2020
1787
Date: 22-10-2020
1171
Date: 3-3-2020
588
|
Erdős offered a prize for a proof of the proposition that "If the sum of reciprocals of a set of integers diverges, then that set contains arbitrarily long arithmetic progressions." This conjecture is still open (unsolved), even for 3-term arithmetic progressions. Erdős also offered for an asymptotic formula for , the largest possible cardinality of a subset of that does not contain a 3-term arithmetic progression.
REFERENCES:
Erdős, P. and Turán, P. "On Some Sequences of Integers." J. London Math. Soc. 11, 261-264, 1936.
Green, B. and Tao, T. "The Primes Contain Arbitrarily Long Arithmetic Progressions." Preprint. 8 Apr 2004. http://arxiv.org/abs/math.NT/0404188.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|