Read More
Date: 11-11-2019
703
Date: 24-9-2020
631
Date: 16-12-2020
894
|
A Calkin-Wilf tree is a special type of binary tree obtained by starting with the fraction and iteratively adding and below each fraction . The Stern-Brocot tree is closely related, putting and below each fraction . Both trees generate every rational number. Writing out the terms in sequence gives 1/1, 1/2, 2/1, 1/3, 3/2, 2/3, 3/1, 1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4, 4/1, ...The sequence has the property that each denominator is the next numerator. This sequence, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, ... (OEIS A002487), is known as Stern's diatomic series, or the fusc function (Dijkstra 1982).
REFERENCES:
Bogomolny, A. "Fractions on a Binary Tree II." http://www.cut-the-knot.org/blue/Fusc.shtml.
Calkin, N. and Wilf, H. S. "Recounting the Rationals." Amer. Math. Monthly 107, 360-363, 2000.
Dijkstra, E. W. Selected Writings on Computing: A Personal Perspective. New York: Springer-Verlag, pp. 215-232, 1982.
Gibbons, L.; Lester, D.; and Bird, R. "Functional Pearl: Enumerating the Rationals." J. Func. Prog. 16, 281-291, 2006.
Schneider, K. "The Tree of All Fractions." http://demonstrations.wolfram.com/TheTreeOfAllFractions/.
Sloane, N. J. A. Sequence A002487/M0141 in "The On-Line Encyclopedia of Integer Sequences."
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مكتبة أمّ البنين النسويّة تصدر العدد 212 من مجلّة رياض الزهراء (عليها السلام)
|
|
|