المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
محلول النشا (1%)
2024-07-08
محلول كلورامين-T (0.01 M)
2024-07-08
تحضير بارا-برومو اسيتانلايد Preparation of p-Bromoacetanilide
2024-07-08
تحضير الاستانلايد ومعوضاته Preparation of Acetanilide and its substituents
2024-07-08
تحضير كلورامين-T
2024-07-08
تحضير داي كلورامين-T
2024-07-08

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Nielsen-Ramanujan Constants  
  
2122   04:33 مساءً   date: 25-6-2019
Author : Berndt, B. C
Book or Source : Ramanujan,s Notebooks, Part I. New York: Springer-Verlag, 1985.
Page and Part : ...


Read More
Date: 26-6-2019 2240
Date: 25-4-2019 1436
Date: 18-7-2019 977

Nielsen-Ramanujan Constants

 

N. Nielsen (1909) and Ramanujan (Berndt 1985) considered the integrals

 a_k=int_1^2((lnx)^k)/(x-1)dx.

(1)

They found the values for k=1 and 2. The general constants for k>3 were found by Levin (1950) and, much later, independently by V. Adamchik (Finch 2003),

 a_p=p!zeta(p+1)-(p(ln2)^(p+1))/(p+1)-p!sum_(k=0)^(p-1)(Li_(p+1-k)(1/2)(ln2)^k)/(k!),

(2)

where zeta(z) is the Riemann zeta function and Li_n(x) is the polylogarithm. The first few values are

a_1 = 1/2zeta(2)=1/(12)pi^2

(3)

a_2 = 1/4zeta(3)

(4)

a_3 = 1/(15)pi^4+1/4pi^2(ln2)^2-1/4(ln2)^4-6Li_4(1/2)-(21)/4(ln2)zeta(3)

(5)

a_4 = 2/3pi^2(ln2)^3-4/5(ln2)^5-24(ln2)Li_4(1/2)-24Li_5(1/2)-(21)/2(ln2)^2zeta(3)+24zeta(5).

(6)


REFERENCES:

Berndt, B. C. Ramanujan's Notebooks, Part I. New York: Springer-Verlag, 1985.

Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; and Lisonek, P. "Special Values of Multidimensional Polylogarithms." Trans. Amer. Math. Soc. 353, 907-941, 2001.

Finch, S. R. "Apéry's Constant: Polylogarithms." §1.6.8 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 47-48, 2003.

Flajolet, P. and Salvy, B. "Euler Sums and Contour Integral Representation." Experim. Math. 7, 15-35, 1998.

Levin, V. I. "About a Problem of S. Ramanujan." Uspekhi Mat. Nauk 5, 161-166, 1950.

Nielsen, N. "Der Eulersche Dilogarithmus und seine Verallgemeinerungen." Nova Acta Leopoldina, Abh. der Kaiserlich Leopoldinisch-Carolinischen Deutschen Akad. der Naturforsch. 90, 121-212, 1909.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.