 
					
					
						Conjugation					
				 
				
					
						 المؤلف:  
						Fraleigh, J. B
						 المؤلف:  
						Fraleigh, J. B					
					
						 المصدر:  
						A First Course in Abstract Algebra, 7th ed. Reading, MA: Addison-Wesley, 2002.
						 المصدر:  
						A First Course in Abstract Algebra, 7th ed. Reading, MA: Addison-Wesley, 2002.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 27-11-2018
						27-11-2018
					
					
						 602
						602					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Conjugation
Conjugation is the process of taking a complex conjugate of a complex number, complex matrix, etc., or of performing a conjugation move on a knot.
Conjugation also has a meaning in group theory. Let  be a group and let
 be a group and let  . Then,
. Then,  defines a homomorphism
 defines a homomorphism  given by
 given by
This is a homomorphism because
The operation on  given by
 given by  is called conjugation by
 is called conjugation by  .
.
Conjugation is an important construction in group theory. Conjugation defines a group action of a group on itself and this often yields useful information about the group. For example, this technique is how the Sylow Theorems are proven. More importantly, a normal subgroup of a group is a subgroup which is invariant under conjugation by any element. Normal groups are extremely important because they are the kernels of homomorphisms and it is possible to take the quotient of a group and one of its normal subgroups.
REFERENCES:
Fraleigh, J. B. A First Course in Abstract Algebra, 7th ed. Reading, MA: Addison-Wesley, 2002.
				
				
					
					 الاكثر قراءة في  التحليل العقدي
					 الاكثر قراءة في  التحليل العقدي 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة