المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
تنفيذ وتقييم خطة إعادة الهيكلة (إعداد خطة إعادة الهيكلة1)
2024-11-05
مـعاييـر تحـسيـن الإنـتاجـيـة
2024-11-05
نـسـب الإنـتاجـيـة والغـرض مـنها
2024-11-05
المـقيـاس الكـلـي للإنتاجـيـة
2024-11-05
الإدارة بـمؤشـرات الإنـتاجـيـة (مـبادئ الإنـتـاجـيـة)
2024-11-05
زكاة الفطرة
2024-11-05

طرد الأطفال
13-1-2016
اتحاجوننا في الله وهو ربنا وربكم
2024-10-21
مرحلة التنفيذ.
27-3-2016
نحل العسل، انواع وفصائل وسلالات نحل العسل
4-7-2020
SOCIOLINGUISTIC BACKGROUND
2024-08-17
مـشكلات المـنشآت الإنتاجيـة المملوكـة للدولـة فـي الاردن
24-8-2021

Blaschke Condition  
  
375   01:15 مساءً   date: 27-11-2018
Author : Krantz, S. G
Book or Source : "The Blaschke Condition." §9.1.5 in Handbook of Complex Variables. Boston, MA: Birkhäuser
Page and Part : ...


Read More
Date: 22-11-2018 297
Date: 1-11-2018 316
Date: 25-11-2018 444

Blaschke Condition

If {a_j} subset= D(0,1) (with possible repetitions) satisfies

 sum_(j=1)^infty(1-|a_j|)<=infty,

where D(0,1) is the unit open disk, and no a_j=0, then there is a bounded analytic function on D(0,1) which has zero set consisting precisely of the a_js, counted according to their multiplicities. More specifically, the infinite product

 product_(j=1)^infty-(a^__j)/(|a_j|)B_(a_j)(z),

where B_(a_j)(z) is a Blaschke factor and z^_ is the complex conjugate, converges uniformly on compact subsets of D(0,1) to a bounded analytic function B(z).


REFERENCES:

Krantz, S. G. "The Blaschke Condition." §9.1.5 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 118-119, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.