 
					
					
						Automorphic Function					
				 
				
					
						 المؤلف:  
						Ford, L
						 المؤلف:  
						Ford, L					
					
						 المصدر:  
						Automorphic Functions. New York: McGraw-Hill, 1929.
						 المصدر:  
						Automorphic Functions. New York: McGraw-Hill, 1929.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 27-11-2018
						27-11-2018
					
					
						 660
						660					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Automorphic Function
An automorphic function  of a complex variable
 of a complex variable  is one which is analytic (except for poles) in a domain
 is one which is analytic (except for poles) in a domain  and which is invariant under a countably infinite group of linear fractional transformations (also known as Möbius transformations)
 and which is invariant under a countably infinite group of linear fractional transformations (also known as Möbius transformations)
Automorphic functions are generalizations of trigonometric functions and elliptic functions.
REFERENCES:
Ford, L. Automorphic Functions. New York: McGraw-Hill, 1929.
Hadamard, J.; Gray, J. J.; and Shenitzer, A. Non-Euclidean Geometry in the Theory of Automorphic Forms. Providence, RI: Amer. Math. Soc., 1999.
Shimura, G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton, NJ: Princeton University Press, 1971.
Siegel, C. L. Topics in Complex Function Theory, Vol. 2: Automorphic Functions and Abelian Integrals. New York: Wiley, 1988.
				
				
					
					 الاكثر قراءة في  التحليل العقدي
					 الاكثر قراءة في  التحليل العقدي 					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة