المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
عمليات خدمة الكرنب
2024-11-28
الأدعية الدينية وأثرها على الجنين
2024-11-28
التعريف بالتفكير الإبداعي / الدرس الثاني
2024-11-28
التعريف بالتفكير الإبداعي / الدرس الأول
2024-11-28
الكرنب (الملفوف) Cabbage (من الزراعة الى الحصاد)
2024-11-28
العلاقات مع أهل الكتاب
2024-11-28

أوجهُ البسملةِ بين السورتين
2023-12-18
بكرة bobbin
4-2-2018
استحباب ذكر ما يُحرم به في تلبيته.
13-4-2016
هل هناك أورام مشابهة لأورام ساق نبات عصا الذهب Golden rod؟
18-3-2021
Fallyes o
2024-11-05
منظور التفاعلية الرمزية Symbolic Interactions Perspective
2023-04-15

Contour Integral  
  
796   02:27 مساءً   date: 17-11-2018
Author : Renteln, P. and Dundes, A.
Book or Source : "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52
Page and Part : ...


Read More
Date: 18-11-2018 594
Date: 27-11-2018 1002
Date: 28-11-2018 437

Contour Integral

An integral obtained by contour integration. The particular path in the complex plane used to compute the integral is called a contour.

As a result of a truly amazing property of holomorphic functions, a closed contour integral can be computed simply by summing the values of the complex residues inside the contour.

Watson (1966 p. 20) uses the notation int^((a+))f(z)dz to denote the contour integral of f(z) with contour encircling the point a once in a counterclockwise direction.

Renteln and Dundes (2005) give the following (bad) mathematical joke about contour integrals:

Q: What's the value of a contour integral around Western Europe? A: Zero, because all the Poles are in Eastern Europe.


REFERENCES:

Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005.

Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.