Contour Integral
المؤلف:
Renteln, P. and Dundes, A.
المصدر:
"Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52
الجزء والصفحة:
...
17-11-2018
1409
Contour Integral
An integral obtained by contour integration. The particular path in the complex plane used to compute the integral is called a contour.
As a result of a truly amazing property of holomorphic functions, a closed contour integral can be computed simply by summing the values of the complex residues inside the contour.
Watson (1966 p. 20) uses the notation
to denote the contour integral of
with contour encircling the point
once in a counterclockwise direction.
Renteln and Dundes (2005) give the following (bad) mathematical joke about contour integrals:
Q: What's the value of a contour integral around Western Europe? A: Zero, because all the Poles are in Eastern Europe.
REFERENCES:
Renteln, P. and Dundes, A. "Foolproof: A Sampling of Mathematical Folk Humor." Notices Amer. Math. Soc. 52, 24-34, 2005.
Watson, G. N. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, England: Cambridge University Press, 1966.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة