Ahlfors Five Island Theorem
المؤلف:
Bergweiler, W
المصدر:
"Iteration of Meromorphic Functions." Bull. Amer. Math. Soc. (N. S.) 29
الجزء والصفحة:
...
1-11-2018
2388
Ahlfors Five Island Theorem
Let
be a transcendental meromorphic function, and let
,
, ...,
be five simply connected domains in
with disjoint closures (Ahlfors 1932). Then there exists
{1,2,...,5}" src="http://mathworld.wolfram.com/images/equations/AhlforsFiveIslandTheorem/Inline6.gif" style="height:14px; width:90px" /> and, for any
, a simply connected domain
{z in C:|z|>R}" src="http://mathworld.wolfram.com/images/equations/AhlforsFiveIslandTheorem/Inline8.gif" style="height:14px; width:111px" />such that
is a conformal mapping of
onto
. If
has only finitely many poles, then "five" may be replaced by "three" (Ahlfors 1933).
REFERENCES:
Ahlfors, L. "Sur les fonctions inverses des fonctions méromorphes." Comptes Rendus Acad. Sci. Paris 194, 1145-1147, 1932. Reprinted in Lars Valerian Ahlfors: Collected Papers Volume 1, 1929-1955 (Ed. R. M. Shortt). Boston, MA: Birkhäuser, 149-151, 1982.
Ahlfors, L. "Über die Kreise die von einer Riemannschen Fläche schlicht überdeckt werden." Comm. Math. Helv. 5, 28-38, 1933. Reprinted in Lars Valerian Ahlfors: Collected Papers Volume 1, 1929-1955 (Ed. R. M. Shortt). Boston, MA: Birkhäuser, 163-173, 1982.
Bergweiler, W. "Iteration of Meromorphic Functions." Bull. Amer. Math. Soc. (N. S.) 29, 151-188, 1993.
Hayman, W. K. Meromorphic Functions. Oxford, England: Oxford University Press, 1964.
Nevanlinna, R. Analytic Functions. New York: Springer-Verlag, 1970.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة