Gaussian Prime
المؤلف:
Bressoud, D. M. and Wagon, S.
المصدر:
Course in Computational Number Theory. London: Springer-Verlag, 2000.
الجزء والصفحة:
...
24-10-2018
813
Gaussian Prime

Gaussian primes are Gaussian integers
satisfying one of the following properties.
1. If both
and
are nonzero then,
is a Gaussian prime iff
is an ordinary prime.
2. If
, then
is a Gaussian prime iff
is an ordinary prime and
.
3. If
, then
is a Gaussian prime iff
is an ordinary prime and
.
The above plot of the complex plane shows the Gaussian primes as filled squares.
The primes which are also Gaussian primes are 3, 7, 11, 19, 23, 31, 43, ... (OEIS A002145). The Gaussian primes with
are given by
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 3,
,
,
,
,
,
,
,
,
.
The numbers of Gaussian primes
with complex modulus
(where the definition
has been used) for
, 1, ... are 0, 100, 4928, 313752, ... (OEIS A091134).

The cover of Bressoud and Wagon (2000) shows an illustration of the distribution of Gaussian primes in the complex plane.
As of 2009, the largest known Gaussian prime, found in Sep. 2006, is
, whose real and imaginary parts both have
decimal digits and whose squared complex modulus has
digits.
REFERENCES:
Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.
Caldwell, C. "Gaussian Mersenne Norm." http://primes.utm.edu/top20/page.php?id=41.
Gethner, E.; Wagon, S.; and Wick, B. "A Stroll Through the Gaussian Primes." Amer. Math. Monthly 105, 327-337, 1998.
Guy, R. K. "Gaussian Primes. Eisenstein-Jacobi Primes." §A16 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 33-36, 1994.
Hardy, G. H. and Wright, E. M. "Primes in
" and "The Fundamental Theorem of Arithmetic in
." §12.7 and 12.8 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 183-187, 1979.
Rademacher, H. Topics in Analytic Number Theory. New York: Springer-Verlag, 1973.
Sloane, N. J. A. Sequences A002145/M2624, A091100, and A091134 in "The On-Line Encyclopedia of Integer Sequences."
Smith, H. J. "Gaussian Primes." http://www.geocities.com/hjsmithh/GPrimes.html.
Wagon, S. "Gaussian Primes." §9.4 in Mathematica in Action. New York: W. H. Freeman, pp. 298-303, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 85, 1991.
Zariski, O. and Samuel, P. Commutative Algebra I. New York: Springer-Verlag, 1958.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة