Read More
Date: 17-11-2018
749
Date: 24-10-2018
454
Date: 27-11-2018
508
|
Gaussian primes are Gaussian integers satisfying one of the following properties.
1. If both and are nonzero then, is a Gaussian prime iff is an ordinary prime.
2. If , then is a Gaussian prime iff is an ordinary prime and .
3. If , then is a Gaussian prime iff is an ordinary prime and .
The above plot of the complex plane shows the Gaussian primes as filled squares.
The primes which are also Gaussian primes are 3, 7, 11, 19, 23, 31, 43, ... (OEIS A002145). The Gaussian primes with are given by , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 3, , , , , , , , , .
The numbers of Gaussian primes with complex modulus (where the definition has been used) for , 1, ... are 0, 100, 4928, 313752, ... (OEIS A091134).
The cover of Bressoud and Wagon (2000) shows an illustration of the distribution of Gaussian primes in the complex plane.
As of 2009, the largest known Gaussian prime, found in Sep. 2006, is , whose real and imaginary parts both have decimal digits and whose squared complex modulus has digits.
REFERENCES:
Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.
Caldwell, C. "Gaussian Mersenne Norm." http://primes.utm.edu/top20/page.php?id=41.
Gethner, E.; Wagon, S.; and Wick, B. "A Stroll Through the Gaussian Primes." Amer. Math. Monthly 105, 327-337, 1998.
Guy, R. K. "Gaussian Primes. Eisenstein-Jacobi Primes." §A16 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 33-36, 1994.
Hardy, G. H. and Wright, E. M. "Primes in " and "The Fundamental Theorem of Arithmetic in ." §12.7 and 12.8 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 183-187, 1979.
Rademacher, H. Topics in Analytic Number Theory. New York: Springer-Verlag, 1973.
Sloane, N. J. A. Sequences A002145/M2624, A091100, and A091134 in "The On-Line Encyclopedia of Integer Sequences."
Smith, H. J. "Gaussian Primes." http://www.geocities.com/hjsmithh/GPrimes.html.
Wagon, S. "Gaussian Primes." §9.4 in Mathematica in Action. New York: W. H. Freeman, pp. 298-303, 1991.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 85, 1991.
Zariski, O. and Samuel, P. Commutative Algebra I. New York: Springer-Verlag, 1958.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
مدرسة دار العلم.. صرح علميّ متميز في كربلاء لنشر علوم أهل البيت (عليهم السلام)
|
|
|