المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الفطرة
2024-11-05
زكاة الغنم
2024-11-05
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05


Complex Number  
  
3970   01:41 مساءً   date: 18-10-2018
Author : Abramowitz, M. and Stegun, I. A.
Book or Source : Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover,
Page and Part : ...


Read More
Date: 27-11-2018 1306
Date: 28-11-2018 998
Date: 18-10-2018 362

Complex Number

 

The complex numbers are the field C of numbers of the form x+iy, where x and y are real numbers and i is the imaginary unit equal to the square root of -1sqrt(-1). When a single letter z=x+iy is used to denote a complex number, it is sometimes called an "affix." In component notation, z=x+iy can be written (x,y). The field of complex numbers includes the field of real numbers as a subfield.

The set of complex numbers is implemented in the Wolfram Language as Complexes. A number x can then be tested to see if it is complex using the command Element[xComplexes], and expressions that are complex numbers have the Head of Complex.

Complex numbers are useful abstract quantities that can be used in calculations and result in physically meaningful solutions. However, recognition of this fact is one that took a long time for mathematicians to accept. For example, John Wallis wrote, "These Imaginary Quantities (as they are commonly called) arising from the Supposed Root of a Negative Square (when they happen) are reputed to imply that the Case proposed is Impossible" (Wells 1986, p. 22).

ComplexNumberArgand

Through the Euler formula, a complex number

 z=x+iy

(1)

may be written in "phasor" form

 z=|z|(costheta+isintheta)=|z|e^(itheta).

(2)

Here, |z| is known as the complex modulus (or sometimes the complex norm) and theta is known as the complex argument or phase. The plot above shows what is known as an Argand diagram of the point z, where the dashed circle represents the complex modulus |z| of z and the angle theta represents its complex argument. Historically, the geometric representation of a complex number as simply a point in the plane was important because it made the whole idea of a complex number more acceptable. In particular, "imaginary" numbers became accepted partly through their visualization.

Unlike real numbers, complex numbers do not have a natural ordering, so there is no analog of complex-valued inequalities. This property is not so surprising however when they are viewed as being elements in the complex plane, since points in a plane also lack a natural ordering.

The absolute square of z is defined by |z|^2=zz^_, with z^_ the complex conjugate, and the argument may be computed from

 arg(z)=theta=tan^(-1)(y/x).

(3)

The real R(z) and imaginary parts I(z) are given by

R(z) = 1/2(z+z^_)

(4)

I(z) = (z-z^_)/(2i)

(5)

= -1/2i(z-z^_)

(6)

= 1/2i(z^_-z).

(7)

de Moivre's identity relates powers of complex numbers for real n by

 z^n=|z|^n[cos(ntheta)+isin(ntheta)].

(8)

A power of complex number z to a positive integer exponent n can be written in closed form as

 z^n=[x^n-(n; 2)x^(n-2)y^2+(n; 4)x^(n-4)y^4-...] 
 +i[(n; 1)x^(n-1)y-(n; 3)x^(n-3)y^3+...].

(9)

The first few are explicitly

z^2 = (x^2-y^2)+i(2xy)

(10)

z^3 = (x^3-3xy^2)+i(3x^2y-y^3)

(11)

z^4 = (x^4-6x^2y^2+y^4)+i(4x^3y-4xy^3)

(12)

z^5 = (x^5-10x^3y^2+5xy^4)+i(5x^4y-10x^2y^3+y^5)

(13)

(Abramowitz and Stegun 1972).

Complex addition

 (a+bi)+(c+di)=(a+c)+i(b+d),

(14)

complex subtraction

 (a+bi)-(c+di)=(a-c)+i(b-d),

(15)

complex multiplication

 (a+bi)(c+di)=(ac-bd)+i(ad+bc),

(16)

and complex division

 (a+bi)/(c+di)=((ac+bd)+i(bc-ad))/(c^2+d^2)

(17)

can also be defined for complex numbers. Complex numbers may also be taken to complex powers. For example, complex exponentiation obeys

 (a+bi)^(c+di)=(a^2+b^2)^((c+id)/2)e^(i(c+id)arg(a+ib)),

(18)

where arg(z) is the complex argument.


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 16-17, 1972.

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 353-357, 1985.

Bold, B. "Complex Numbers." Ch. 3 in Famous Problems of Geometry and How to Solve Them. New York: Dover, pp. 19-27, 1982.

Courant, R. and Robbins, H. "Complex Numbers." §2.5 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 88-103, 1996.

Ebbinghaus, H. D.; Hirzebruch, F.; Hermes, H.; Prestel, A; Koecher, M.; Mainzer, M.; and Remmert, R. Numbers. New York: Springer-Verlag, 1990.

Krantz, S. G. "Complex Arithmetic." §1.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 1-7, 1999.

Mazur, B. Imagining Numbers (Particularly the Square Root of Minus Fifteen). Farrar, Straus and Giroux, 2003.

Morse, P. M. and Feshbach, H. "Complex Numbers and Variables." §4.1 in Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 349-356, 1953.

Nahin, P. J. An Imaginary Tale: The Story of -1. Princeton, NJ: Princeton University Press, 2007.

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Complex Arithmetic." §5.4 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 171-172, 1992.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, pp. 21-23, 1986.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, p. 1168, 2002.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.