Read More
Date: 11-12-2018
412
Date: 18-11-2018
586
Date: 18-10-2018
418
|
If a function analytic at the origin has no singularities other than poles for finite , and if we can choose a sequence of contours about tending to infinity such that never exceeds a given quantity on any of these contours and is uniformly bounded on them, then
where is the sum of the principal parts of at all poles within . If there is a pole at , then we can replace by the negative powers and the constant term in the Laurent series of about .
REFERENCES:
Jeffreys, H. and Jeffreys, B. S. "Mittag-Leffler's Theorem." §12.006 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 383-386, 1988.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|