Read More
Date: 24-10-2018
820
Date: 14-12-2018
1147
Date: 15-1-2018
1741
|
Many boron compounds are electron-deficient, meaning that they lack an octet of electrons around the central boron atom. This deficiency is what accounts for boron being a strong Lewis acid, in that it can accept protons (H+ ions) in solution. Boron-hydrogen compounds are referred to as boron hydrides, or boranes.
Boranes
In the molecule BH3, each of the 3 hydrogen atoms is bonded to the central boron atom. The boron atom has only six electrons in its outer shell, leading to an electron deficiency.
Diborane:
This molecule has 12 valence shell electrons; 3 each from the B atoms, and 1 each from the six H atoms. To make this structure follow the rules required to draw any lewis structure model, then it must have 14 valence shell electrons; however it does not. According to this figure, the two B atoms and four H atoms lie in the same plane (sp3- perpendicular to the plane of the page). In these four bonds 8 electrons are involved. Four electrons bond the remaining H atoms to the two B atoms and the B atoms together. This is done when the two H atoms simultaneously bond to the two B atoms. This creates what is called an atom "bridge" because there are two electrons shared among three atoms. These bonds are also called three-center two-electron bonds. The bond between the H and the B atoms can be rationalized using molecular orbital theory.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|