تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Schwarz Reflection Principle
المؤلف:
Havil, J
المصدر:
Gamma: Exploring Euler,s Constant. Princeton, NJ: Princeton University Press
الجزء والصفحة:
...
14-10-2018
694
Schwarz Reflection Principle
Suppose that is an analytic function which is defined in the upper half-disk
. Further suppose that
extends to a continuous function on the real axis, and takes on real values on the real axis. Then
can be extended to an analytic function on the whole disk by the formula
![]() |
and the values for reflected across the real axis are the reflections of
across the real axis. It is easy to check that the above function is complex differentiable in the interior of the lower half-disk. What is remarkable is that the resulting function must be analytic along the real axis as well, despite no assumptions of differentiability.
This is called the Schwarz reflection principle, and is sometimes also known as Schwarz's symmetric principle (Needham 2000, p. 257). The diagram above shows the reflection principle applied to a function defined for the upper half-disk (left figure; red) and its image (right figure; red). The function is real on the real axis, so it is possible to extend the function to the reflected domain (left and right figures; pink).
For the reflected function to be continuous, it is necessary for the values at the boundary to be continuous and to fall on the line being reflected. The reflection principle also applies in the generality of reflecting along any line, not just the real axis, in which case the function has to take values along a line in the range. In fact, any arc which has a neighborhood biholomorphic to a straight line can be reflected across. The basic example is the boundary of the unit circle which is mapped to the real axis by
.
The reflection principle can also be used to reflect a harmonic function which extends continuously to the zero function on its boundary. In this case, for negative , defining
![]() |
extends to a harmonic function on the reflected domain. Again note that it is necessary for
. This result provides a way of extending a harmonic function from a given open set to a larger open set (Krantz 1999, p. 95).
REFERENCES:
Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 195 and 213, 2003.
Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, 1999.
Needham, T. Visual Complex Analysis. New York: Clarendon Press, 2000.
الاكثر قراءة في التحليل العقدي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
