المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19


Apéry,s Constant  
  
1844   03:38 مساءً   date: 13-8-2018
Author : Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H
Book or Source : Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.
Page and Part : ...


Read More
Date: 2-10-2019 1319
Date: 20-8-2018 1748
Date: 18-8-2019 1162

Apéry's Constant

 

Apéry's constant is defined by

 zeta(3)=1.2020569...,

(1)

(OEIS A002117) where zeta(z) is the Riemann zeta function. Apéry (1979) proved that zeta(3) is irrational, although it is not known if it is transcendental. Sorokin (1994) and Nesterenko (1996) subsequently constructed independent proofs for the irrationality of zeta(3) (Hata 2000). zeta(3) arises naturally in a number of physical problems, including in the second- and third-order terms of the electron's gyromagnetic ratio, computed using quantum electrodynamics.

The following table summarizes progress in computing upper bounds on the irrationality measure for zeta(3). Here, the exact values for mu_4 is given by

mu_4 = 1+(4ln(sqrt(2)+1)+3)/(4ln(sqrt(2)+1)-3)

(2)

 approx 13.4178202

(3)

(Hata 2000).

mu_n upper bound reference
1 5.513891 Rhin and Viola (2001)
2 8.830284 Hata (1990)
3 12.74359 Dvornicich and Viola (1987)
4 13.41782 Apéry (1979), Sorokin (1994), Nesterenko (1996), Prévost (1996)

Beukers (1979) reproduced Apéry's rational approximation to zeta(3) using the triple integral of the form

 int_0^1int_0^1int_0^1(L_n(x)L_n(y))/(1-(1-xy)u)dxdydu,

(4)

where L_n(x) is a Legendre polynomial. Beukers's integral is given by

 zeta(3)=-1/2int_0^1int_0^1(ln(xy))/((1-xy))dxdy,

(5)

a result that is a special case of what is known as Hadjicostas's formula.

This integral is closely related to zeta(3) using the curious identity

int_0^1int_0^1int_0^1(x^ry^s)/(1-(1-xy)u)dxdydu = {2zeta(3)-sum_(l=1)^(r)2/(l^3) for r=s; sum_(l=min(r,s)+1)^(max(r,s))1/(|r-s|l^2) for r!=s

(6)

= {2zeta(3)-2H_r^((3)) for r=s; (psi_1(1+min(r,s))-psi_1(1+max(r,s)))/(|r-s|) for r!=s,

(7)

where H_r^((n)) is a generalized harmonic number and psi_k(x) is a polygamma function (Hata 2000).

Sums related to zeta(3) include

zeta(3) = 5/2sum_(n=1)^(infty)((-1)^(n-1))/(n^3(2n; n))

(8)

= 5/2sum_(k=1)^(infty)((-1)^(k+1)(k!)^2)/((2k)!k^3)

(9)

(used by Apéry), the related sum

 zeta(3)=2/3(ln2)^3+4sum_(k=1)^infty((-1)^(k+1))/(k^32^k(2k; k))

(10)

as first proved by G. Huvent in 2002 (Gourevitch) and rediscovered by B. Cloitre (pers. comm., Oct. 8, 2004), and

sum_(k=0)^(infty)1/((2k+1)^3) = 7/8zeta(3)

(11)

= lambda(3)

(12)

sum_(k=0)^(infty)1/((3k+1)^3) = (2pi^3)/(81sqrt(3))+(13)/(27)zeta(3)

(13)

sum_(k=0)^(infty)1/((4k+1)^3) = (pi^3)/(64)+7/(16)zeta(3)

(14)

sum_(k=0)^(infty)1/((6k+1)^3) = (pi^3)/(36sqrt(3))+(91)/(216)zeta(3),

(15)

where lambda(z) is the Dirichlet lambda function. The above equations are special cases of a general result due to Ramanujan (Berndt 1985).

Apéry's constant is given by an infinite family BBP-type formulas of the form

zeta(3) = 4/3sum_(k=0)^(infty)((-1)^k)/((1+k)^3)

(16)

= 4/3sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)+1/((3k+3)^3)]

(17)

= 3/2sum_(k=0)^(infty)(-1)^k[1/((3k+1)^3)-1/((3k+2)^3)-2/((3k+3)^3)]

(18)

= 4/3sum_(k=0)^(infty)(-1)^k[1/((5k+1)^3)-1/((5k+2)^3)+1/((5k+3)^3)-1/((5k+4)^3)+1/((5k+5)^3)]

(19)

= 1/(15)sum_(k=0)^(infty)(-1)^k[(21)/((5k+1)^3)-(21)/((5k+2)^3)+(21)/((5k+3)^3)-(21)/((5k+4)^3)-(104)/((5k+5)^3)]

(20)

= 4/3sum_(k=0)^(infty)(-1)^k[1/((7k+1)^3)-1/((7k+2)^3)+1/((7k+3)^3)-1/((7k+4)^3)+1/((7k+5)^3)-1/((7k+6)^3)+1/((7k+7)^3)]

(21)

= 1/(30)sum_(k=0)^(infty)(-1)^k[(41)/((7k+1)^3)-(41)/((7k+2)^3)+(41)/((7k+3)^3)-(41)/((7k+4)^3)+(41)/((7k+5)^3)-(41)/((7k+6)^3)+(302)/((7k+7)^3)]

(22)

(E. W. Weisstein, Feb. 25, 2006), and the amazing two special sums

zeta(3) = 1/(672)sum_(k=0)^(infty)1/(4096^k)[(2048)/((24k+1)^3)-(11264)/((24k+2)^3)-(1024)/((24k+3)^3)+(11776)/((24k+4)^3)-(512)/((24k+5)^3)+(4096)/((24k+6)^3)+(256)/((24k+7)^3)+(3456)/((24k+8)^3)+(128)/((24k+9)^3)-(704)/((24k+10)^3)-(64)/((24k+11)^3)-(128)/((24k+12)^3)-(32)/((24k+13)^3)-(176)/((24k+14)^3)+(16)/((24k+15)^3)+(216)/((24k+16)^3)+8/((24k+17)^3)+(64)/((24k+18)^3)-4/((24k+19)^3)+(46)/((24k+20)^3)-2/((24k+21)^3)-(11)/((24k+22)^3)+1/((24k+23)^3)]

(23)

= 9/(224)sum_(k=0)^(infty)1/(4096^k)[(1024)/((24k+2)^3)-(3072)/((24k+3)^3)+(512)/((24k+4)^3)+(1024)/((24k+6)^3)+(1152)/((24k+8)^3)+(384)/((24k+9)^3)+(64)/((24k+10)^3)+(128)/((24k+12)^3)+(16)/((24k+14)^3)+(48)/((24k+15)^3)+(72)/((24k+16)^3)+(16)/((24k+18)^3)+2/((24k+20)^3)-6/((24k+21)^3)+1/((24k+22)^3)].

(24)

Determining a sum of this type is given as an exercise by Bailey et al. (2007, p. 225; typo corrected).

A beautiful double series for zeta(3) is given by

 zeta(3)=1/3sum_(i=1)^inftysum_(j=1)^infty((i-1)!(j-1)!)/((i+j)!)H_(i+j),

(25)

where H_n is a harmonic number (O. Oloa, pers. comm., Dec. 30, 2005).

Apéry's proof relied on showing that the sum

 a(n)=sum_(k=0)^n(n; k)^2(n+k; k)^2,

(26)

where (n; k) is a binomial coefficient, satisfies the recurrence relation

 n^3a_n-(34n^3-51n^2+27n-5)a_(n-1)+(n-1)^3a_(n-2)=0

(27)

(van der Poorten 1979, Zeilberger 1991). The characteristic polynomial x^2-34x+1 has roots (1+/-sqrt(2))^4, so

 lim_(n->infty)(a_(n+1))/(a_n)=(1+sqrt(2))^4

(28)

is irrational and a_n cannot satisfy a two-term recurrence (Jin and Dickinson 2000).

Apéry's constant is also given by

 zeta(3)=8sum_(n=1)^infty(S_(n,2))/(n!n),

(29)

where S_(n,m) is a Stirling number of the first kind. This can be rewritten as

zeta(3) = 1/2sum_(n=1)^(infty)1/(n^2)(1+1/2+...+1/n)

(30)

= 1/2sum_(n=1)^(infty)(H_n)/(n^2),

(31)

where H_n is the nth harmonic number (Castellanos 1988).

Integrals for zeta(3) include

zeta(3) = 1/2int_0^infty(t^2)/(e^t-1)dt

(32)

= 8/7[1/4pi^2ln2+2int_0^(pi/2)xln(sinx)dx].

(33)

Gosper (1990) gave

 zeta(3)=1/4sum_(k=1)^infty(30k-11)/((2k-1)k^3(2k; k)^2).

(34)

A continued fraction involving Apéry's constant is

 6/(zeta(3))=5-(1^6)/(117-)(2^6)/(535-)...(n^6)/(34n^3+51n^2+27n+5-)...

(35)

(Apéry 1979, Le Lionnais 1983). Amdeberhan (1996) used Wilf-Zeilberger pairs (F,G) with

 F(n,k)=((-1)^kk!^2(sn-k-1)!)/((sn+k+1)!(k+1)),

(36)

s=1 to obtain

 zeta(3)=5/2sum_(n=1)^infty(-1)^(n-1)1/((2n; n)n^3).

(37)

For s=2,

 zeta(3)=1/4sum_(n=1)^infty(-1)^(n-1)(56n^2-32n+5)/((2n-1)^2)1/((3n; n)(2n; n)n^3)

(38)

(Boros and Moll 2004, p. 236; Amdeberhan 1996), and for s=3,

 zeta(3)=sum_(n=0)^infty((-1)^n)/(72(4n; n)(3n; n))(5265n^4+13878n^3+13761n^2+6120n+1040)/((4n+1)(4n+3)(n+1)(3n+1)^2(3n+2)^2)

(39)

(Amdeberhan 1996). The corresponding G(n,k) for s=1 and 2 are

 G(n,k)=(2(-1)^kk!^2(n-k)!)/((n+k+1)!(n+1)^2)

(40)

and

 G(n,k)=((-1)^kk!^2(2n-k)!(3+4n)(4n^2+6n+k+3))/(2(2n+k+2)!(n+1)^2(2n+1)^2).

(41)

zeta(3) is related to the Glaisher-Kinkelin constant A and polygamma function psi_n(z) by

 zeta(3)=2/3pi^2[12psi_(-4)(1)-6lnA-ln(2pi)].

(42)

Gosper (1996) expressed zeta(3) as the matrix product

 lim_(N->infty)product_(n=1)^NM_n=[0 zeta(3); 0 1],

(43)

where

 M_n=[((n+1)^4)/(4096(n+5/4)^2(n+7/4)^2) (24570n^4+64161n^3+62152n^2+26427n+4154)/(31104(n+1/3)(n+1/2)(n+2/3)); 0 1]

(44)

which gives 12 bits per term. The first few terms are

M_1 = [1/(19600) (2077)/(1728); 0 1]

(45)

M_2 = [1/(9801) (7561)/(4320); 0 1]

(46)

M_3 = [9/(67600) (50501)/(20160); 0 1],

(47)

which gives

 zeta(3) approx (423203577229)/(352066176000)=1.20205690315732....

(48)

Given three integers chosen at random, the probability that no common factor will divide them all is

 [zeta(3)]^(-1) approx 1.20206^(-1) approx 0.831907.

(49)

B. Haible and T. Papanikolaou computed zeta(3) to 1000000 digits using a Wilf-Zeilberger pair identity with

 F(n,k)=(-1)^k(n!^6(2n-k-1)!k!^3)/(2(n+k+1)!^2(2n)!^3),

(50)

s=1, and t=1, giving the rapidly converging

 zeta(3)=sum_(n=0)^infty(-1)^n(n!^(10)(205n^2+250n+77))/(64(2n+1)!^5)

(51)

(Amdeberhan and Zeilberger 1997). The record as of Dec. 1998 was 128 million digits, computed by S. Wedeniwski.


REFERENCES:

Amdeberhan, T. "Faster and Faster Convergent Series for zeta(3)." Electronic J. Combinatorics 3, No. 1, R13, 1-2, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i1r13.html.

Amdeberhan, T. and Zeilberger, D. "Hypergeometric Series Acceleration via the WZ Method." Electronic J. Combinatorics 4, No. 2, R3, 1-3, 1997. http://www.combinatorics.org/Volume_4/Abstracts/v4i2r3.html. Also available at http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/accel.html.

Apéry, R. "Irrationalité de zeta(2) et zeta(3)." Astérisque 61, 11-13, 1979.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Bailey, D. H. and Crandall, R. E. "Random Generators and Normal Numbers." Exper. Math. 11, 527-546, 2002.

Preprint dated Feb. 22, 2003 available at http://www.nersc.gov/~dhbailey/dhbpapers/bcnormal.pdf.

Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.

Beukers, F. "A Note on the Irrationality of zeta(2) and zeta(3)." Bull. London Math. Soc. 11, 268-272, 1979.

Beukers, F. "Another Congruence for the Apéry Numbers." J. Number Th. 25, 201-210, 1987.

Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.

Conway, J. H. and Guy, R. K. "The Great Enigma." In The Book of Numbers. New York: Springer-Verlag, pp. 261-262, 1996.

Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, pp. 76 and 371, 2004.

Dvornicich, R. and Viola, C. "Some Remarks on Beukers' Integrals." In Number Theory, Colloq. Math. Soc. János Bolyai, Vol. 51.Amsterdam, Netherlands: North-Holland, pp. 637-657, 1987.

Ewell, J. A. "A New Series Representation for zeta(3)." Amer. Math. Monthly 97, 219-220, 1990.

Finch, S. R. "Apéry's Constant." §1.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 40-53, 2003.

Gosper, R. W. "Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics." In Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990.

Gosper, R. W. "Zeta(3) to 250000 digits." math-fun@cs.arizona.edu posting, Sept. 1, 1996.

Gourevitch, P. "L'univers de pi." http://www.pi314.net/hypergse11.php.

Gutnik, L. A. "On the Irrationality of Some Quantities Containing zeta(3)." Acta Arith. 42, 255-264, 1983. English translation in Amer. Math. Soc. Transl. 140, 45-55, 1988.

Haible, B. and Papanikolaou, T. "Fast Multiprecision Evaluation of Series of Rational Numbers." Technical Report TI-97-7. Darmstadt, Germany: Darmstadt University of Technology, Apr. 1997.

Hata, M. "A New Irrationality Measure for zeta(3)." Acta Arith. 92, 47-57, 2000.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, p. 42, 2003.

Huvent, G. "Formules d'ordre supérieur." Pi314.net, 2002. http://s146372241.onlinehome.fr/web/pi314.net/hypergse11.php#x13-107002r480.

Huylebrouck, D. "Similarities in Irrationality Proofs for piln2zeta(2), and zeta(3)." Amer. Math. Monthly 108, 222-231, 2001.

Jin, Y. and Dickinson, H. "Apéry Sequences and Legendre Transforms." J. Austral. Math. Soc. Ser. A 68, 349-356, 2000.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.

Nesterenko, Yu. V. "A Few Remarks on zeta(3)." Mat. Zametki 59, 865-880, 1996. English translation in Math. Notes 59, 625-636, 1996.

Plouffe, S. "Table of Current Records for the Computation of Constants." http://pi.lacim.uqam.ca/eng/records_en.html.

Prévost, M. "A New Proof of the Irrationality of zeta(2) and zeta(3) using Padé Approximants." J. Comput. Appl. Math. 67, 219-235, 1996.

Rhin, G. and Viola, C. "The Group Structure for zeta(3)." Acta Arith. 97, 269-293, 2001.

Sloane, N. J. A. Sequence A002117/M0020 in "The On-Line Encyclopedia of Integer Sequences."

Sorokin, V. N. "Hermite-Padé Approximations for Nikishin Systems and the Irrationality of zeta(3)." Uspekhi Mat. Nauk 49, 167-168, 1994. English translation in Russian Math. Surveys 49, 176-177, 1994.

Srivastava, H. M. "Some Simple Algorithms for the Evaluations and Representations of the Riemann Zeta Function at Positive Integer Arguments." J. Math. Anal. Appl. 246, 331-351, 2000.

van der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality of zeta(3)." Math. Intel. 1, 196-203, 1979.

Wedeniwski, S. "128000026 Digits of Zeta(3)." http://pi.lacim.uqam.ca/piDATA/Zeta3.txt.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 33, 1986.

Zeilberger, D. "The Method of Creative Telescoping." J. Symb. Comput. 11, 195-204, 1991.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.