Liouville,s Approximation Theorem
المؤلف:
Apostol, T. M.
المصدر:
"Liouville,s Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
14-10-2020
1206
Liouville's Approximation Theorem
For any algebraic number
of degree
, a rational approximation
to
must satisfy
for sufficiently large
. Writing
leads to the definition of the irrationality measure of a given number. Apostol (1997) states the theorem in the slightly modified but equivalent form that there exists a positive constant
depending only on
such that for all integers
and
with
,
REFERENCES:
Apostol, T. M. "Liouville's Approximation Theorem." §7.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 146-148, 1997.
Courant, R. and Robbins, H. "Liouville's Theorem and the Construction of Transcendental Numbers." §2.6.2 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 104-107, 1996.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة