 
					
					
						Well-Defined					
				 
				
					
						 المؤلف:  
						المرجع الالكتروني للمعلوماتيه
						 المؤلف:  
						المرجع الالكتروني للمعلوماتيه					
					
						 المصدر:  
						المرجع الالكتروني للمعلوماتيه
						 المصدر:  
						المرجع الالكتروني للمعلوماتيه					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 25-7-2018
						25-7-2018
					
					
						 2769
						2769					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Well-Defined
An expression is called "well-defined" (or "unambiguous") if its definition assigns it a unique interpretation or value. Otherwise, the expression is said to not be well-defined or to be ambiguous.
For example, the expression  (the product) is well-defined if
 (the product) is well-defined if  ,
,  , and
, and  are integers. Because integers are associative,
 are integers. Because integers are associative,  has the same value whether it is interpreted to mean
 has the same value whether it is interpreted to mean  or
 or  . However, if
. However, if  ,
,  , and
, and  are Cayley numbers, then the expression
 are Cayley numbers, then the expression  is not well-defined, since Cayley numbers are not, in general, associative, so that the two interpretations
 is not well-defined, since Cayley numbers are not, in general, associative, so that the two interpretations  and
 and  can be different.
 can be different.
Sometimes, ambiguities are implicitly resolved by notational convention. For example, the conventional interpretation of  is
 is  , never
, never  , so that the expression
, so that the expression  is well-defined even though exponentiation is nonassociative.
 is well-defined even though exponentiation is nonassociative.
The term "well-defined" also has a technical meaning in field of partial differential equations. A solution to a partial differential equation that is a continuous function of its values on the boundary is said to be well-defined. Otherwise, a solution is called ill-defined.
				
				
					
					 الاكثر قراءة في  المعادلات التفاضلية الجزئية
					 الاكثر قراءة في  المعادلات التفاضلية الجزئية					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة