تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Laplace,s Equation
المؤلف:
Abramowitz, M. and Stegun, I. A
المصدر:
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover
الجزء والصفحة:
...
21-7-2018
2544
The scalar form of Laplace's equation is the partial differential equation
![]() |
(1) |
where is the Laplacian.
Note that the operator is commonly written as
by mathematicians (Krantz 1999, p. 16). Laplace's equation is a special case of the Helmholtz differential equation
![]() |
(2) |
with , or Poisson's equation
![]() |
(3) |
with .
The vector Laplace's equation is given by
![]() |
(4) |
A function which satisfies Laplace's equation is said to be harmonic. A solution to Laplace's equation has the property that the average value over a spherical surface is equal to the value at the center of the sphere (Gauss's harmonic function theorem). Solutions have no local maxima or minima. Because Laplace's equation is linear, the superposition of any two solutions is also a solution.
A solution to Laplace's equation is uniquely determined if (1) the value of the function is specified on all boundaries (Dirichlet boundary conditions) or (2) the normal derivative of the function is specified on all boundaries (Neumann boundary conditions).
Coordinate System | Variables | Solution Functions |
Cartesian | ![]() |
exponential functions, circular functions, hyperbolic functions |
circular cylindrical | ![]() |
Bessel functions, exponential functions, circular functions |
conical | ellipsoidal harmonics, power | |
confocal ellipsoidal | ![]() |
ellipsoidal harmonics of the first kind |
elliptic cylindrical | ![]() |
Mathieu function, circular functions |
oblate spheroidal | ![]() |
Legendre polynomial, circular functions |
parabolic | Bessel functions, circular functions | |
parabolic cylindrical | parabolic cylinder functions, Bessel functions, circular functions | |
paraboloidal | ![]() |
circular functions |
prolate spheroidal | ![]() |
Legendre polynomial, circular functions |
spherical | ![]() |
Legendre polynomial, power, circular functions |
Laplace's equation can be solved by separation of variables in all 11 coordinate systems that the Helmholtz differential equation can. The form these solutions take is summarized in the table above. In addition to these 11 coordinate systems, separation can be achieved in two additional coordinate systems by introducing a multiplicative factor. In these coordinate systems, the separated form is
![]() |
(5) |
and setting
![]() |
(6) |
where are scale factors, gives the Laplace's equation
![]() |
(7) |
If the right side is equal to , where
is a constant and
is any function, and if
![]() |
(8) |
where is the Stäckel determinant, then the equation can be solved using the methods of the Helmholtz differential equation. The two systems where this is the case are bispherical and toroidal, bringing the total number of separable systems for Laplace's equation to 13 (Morse and Feshbach 1953, pp. 665-666).
In two-dimensional bipolar coordinates, Laplace's equation is separable, although the Helmholtz differential equation is not.
Zwillinger (1997, p. 128) calls
![]() |
(9) |
the Laplace equations.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 17, 1972.
Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, 1959.
Eisenhart, L. P. "Separable Systems in Euclidean 3-Space." Physical Review 45, 427-428, 1934.
Eisenhart, L. P. "Separable Systems of Stäckel." Ann. Math. 35, 284-305, 1934.
Eisenhart, L. P. "Potentials for Which Schroedinger Equations Are Separable." Phys. Rev. 74, 87-89, 1948.
Krantz, S. G. "The Laplace Equation." §7.1.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 16 and 89, 1999.
Moon, P. and Spencer, D. E. "Recent Investigations of the Separation of Laplace's Equation." Proc. Amer. Math. Soc. 4, 302, 1953.
Moon, P. and Spencer, D. E. "Eleven Coordinate Systems." §1 in Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 1-48, 1988.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 125-126 and 271, 1953.
Valiron, G. The Geometric Theory of Ordinary Differential Equations and Algebraic Functions. Brookline, MA: Math. Sci. Press, pp. 306-315, 1950.
Zwillinger, D. (Ed.). CRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, p. 417, 1995.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 128, 1997.