المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
أزواج النبي "ص" يشاركن في الصراع على الخلافة
2024-11-06
استكمال فتح اليمن بعد حنين
2024-11-06
غزوة حنين والطائف
2024-11-06
اية الميثاق والشهادة لعلي بالولاية
2024-11-06
اية الكرسي
2024-11-06
اية الدلالة على الربوبية
2024-11-06


Alfreds Arnolds Adolfs Meders  
  
20   01:26 مساءً   date: 11-4-2017
Author : G Engelis
Book or Source : In memorium of Professor Alfreds Meders
Page and Part : ...


Read More
Date: 11-4-2017 107
Date: 15-4-2017 93
Date: 11-4-2017 81

Born: 1 October 1873 in Riga, Latvia

Died: 1944 in Poznan, Poland


Alfreds Meders' father was a school teacher who taught mathematics at a high school. Alfreds' family were of German origin and he was brought up with German as his first language. He graduated from high school in 1890 and went to Dorpat to study mathematics at the university there.

Dorpat university had been founded in 1632 by Gustavus II Adolphus of Sweden, but had been closed for nearly 100 years before being reopened in 1802. This was during the period when Estonia was controlled by Russia. The accession of Alexander III saw Russia make a much greater effort to increase Russian influence on Estonia. In 1887 Russian was made the language of instruction, instead of German and Estonian, and in 1893 while Meders studied at the University of Dorpat, the Russians made an effort to convert the establishment to a Russian one. The name of Dorpat (and of the university) was changed to Tartu.

Adolf Kneser, who had been taught by Kronecker and written a thesis on algebraic functions and equations, was the professor at Dorpat. He greatly influenced Meders who graduated from Tartu University's Faculty of Physics and Mathematics in 1895 (notice that Dorpat had changed its name to Tartu by this time). In the same year of 1895, Peirs Bohl became Head of the Departmant of Mathematics at Riga Polytechnic Institute, founded in1862, the only higher education institution in Latvia at the time. Two years later Meders was appointed to Riga Polytechnic Institute where at first he was an assistant of K Kupfer, but later became a dozent. We mentioned above how Dorpat became a Russian university in 1893, and this happened three years later to Riga Polytechnic Institute. By the time Meders was appointed, therefore, all teaching at the Institute was in Russian. Leimanis, who was a student of Meders, writes in [2] that he taught:-

... as a beloved and outstanding teacher.

In 1906 Meders was awarded his masters degree from the University of St Petersburg.

Meders worked on differential geometry and mathematical analysis. He often published papers written in German, in German journals. For example he published the following three papers in Crelle's Journal: Über einige Arten Singularer Punkte von Raumkurven (1896); Zur Theorie der singularen Punkte einer Raumkurve (1899); and Analytische Untersuchung singularer Punkte von Raumkurven (1910). In Monatshefte für Mathematik he published: Über die Determinante von Wronski (1906); and Zur Differentiation bestimmter Integrale nach einem Parameter (1911).

During World War I, Riga Polytechnic Institute was evacuated to Moscow. During 1917 the Russian domination of Latvia ended and, after a brief period of German invasion, the country became independent in a proclamation made on 18 November 1918. Within this new independent country there was a wish to quickly found a national university and the University of Latvia was founded in September 1919. Meders was appointed as a professor at the University of Latvia from the time of its founding.

Meders was also interested in the history of mathematics and he wrote an important paper Direkte und indirekte Beziehungen zwischen Gauss und der Dorpater Universität (Direct and indirect connections between Gauss and the University of Dorpat) in 1928. His interests went outside mathematics and he sometimes lectured on astronomy, meteorology and biology where he had a special interest in birds.

The German-Soviet Nonaggression Pact was signed in August 1939 and Latvia's fate was out of its own hands. Meders began teaching at the start of the academic year 1939-40, but being of German origin he found himself on a list of people who were required to be repatriated to Germany. It was with great sadness that he left Latvia and Riga which had been his home.


 

Articles:

  1. G Engelis, In memorium of Professor Alfreds Meders (Latvian), Zvaigznota Debess (Riga, 1994), 23-24.
  2. E Leimanis, Die Dorpater mathematische Schule in der zweiten Hälfte des 19. Jahrhunderts und die wissenschaftliche Tätigkeit ihrer ehemaligen Schüler, besonders am Polytechnischen Institut in Riga, Die Universitäten Dorpat/Tartu, Riga und Wilna/Vilnius 1579-1979 (Cologne, 1987), 217-240.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.