المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05
الحالات التي لا يقبل فيها الإثبات بشهادة الشهود
2024-11-05
إجراءات المعاينة
2024-11-05
آثار القرائن القضائية
2024-11-05

أغذية غير تقليدية Unconventional Foods
31-8-2020
Mass Relations from Equations
24-6-2017
نظم المطر(النظام اللورنسي)
2-6-2016
ضمانات المتهم في المواثيق والإعلانات الدولية
20-3-2018
Cartoon Free Fall
10-10-2016
كيف تستعد لمقابلة عمل
2024-09-18

The interior Schwarzschild solution and the TOV equation  
  
1658   06:22 مساءً   date: 23-1-2017
Author : Heino Falcke and Friedrich W Hehl
Book or Source : THE GALACTIC BLACK HOLE Lectures on General Relativity and Astrophysics
Page and Part : p 25

The interior Schwarzschild solution and the TOV equation

In the previous section we investigated the gravitational field outside a spherically symmetric mass distribution. Now it is time to have a look inside matter. Of course, in a first attempt, we have to make decisive simplifications on the internal structure of a star. We will consider cold catalyzed stellar material during the later phase of its evolution which can be reasonably approximated by a perfect fluid. The typical mass densities are in the range of ≈107 g cm3 (white dwarfs) or ≈1014 g cm3 (neutron stars, i.e. pulsars). In this context we assume vanishing angular momentum.

We start again from a static and spherically symmetric metric

 (1.1)

and the energy–momentum tensor

 (1.2)

where ρ = ρ(r ) is the spherically symmetric mass density and p = p(r ) the pressure (isotropic stress). This has to be supplemented by the equation of state which, for a simple fluid, has the form p = p(ρ). We compute the non-vanishing components of the field equation by means of computer algebra as (here ()' = d/dr)

 (1.3)

 (1.4)

 (1.5)

The (φ, φ)-component turns out to be equivalent to the (θ, θ)-component. For convenience, we define a mass function m(r) according to

 (1.6)

We can differentiate (1.6) with respect to r and find, after substituting (1.3), a differential equation for m(r) which can be integrated, provided ρ(r) is assumed to be known:

 (1.7)

Differentiating (1.4) and using all three components of the field equation, we obtain a differential equation for A:

 (1.8)

We can derive an alternative representation of A' by substituting (1.6) into (1.4). Then, together with (1.8), we arrive at the Tolman–Oppenheimer–Volkoff (TOV) equation

 (1.9)

The Newtonian terms are denoted by boldface letters. The system of equations consisting of (1.7), (1.8), the TOV equation (1.9), and the equation of state p = p(ρ) forms a complete set of equations for the unknown functions A(r ), ρ(r), p(r ), and m(r ), with

 (1.10)

These differential equations have to be supplemented by initial conditions.

In the center of the star, there is, of course, no enclosed mass. Hence we demand m(0) = 0. The density has to be finite at the origin, i.e. ρ(0) = ρc, where ρc is the density of the central region. At the surfaces of the star, at r = Rּ, we have to match matter with vacuum. In vacuum, there is no pressure which requires p(Rּ) = 0. Moreover, the mass function should then yield the total mass of the star, m(Rּ) = M. Finally, we have to match the components of the metric. Therefore, we have to demand exp[A(Rּ)] = 1 − 2m(Rּ)/Rּ.

Equations (1.3), (1.4), (1.5) and certain regularity conditions which generalize our boundary conditions, i.e.

● the regularity of the geometry at the origin,

● the finiteness of the central pressure and density,

● the positivity of the central pressure and density,

● the positivity of the pressure and density,

● the monotonic decrease in pressure and density,

impose conditions on the functions ρ and p. Then, even without explicit knowledge of the equation of state, the general form of the metric can be determined. For most recent work, see Harman and Visser and the literature given there.

We can obtain a simple solution, if we assume a constant mass density

ρ = ρ(r ) = constant.   (1.11)

One should mention here that ρ is not the physically observable fluid density, which results from an appropriate projection of the energy–momentum tensor into the reference frame of an observer. Thus, this model is not as unphysical as it may look at first. However, there are serious but more subtle objections which we will not discuss further in this context. When ρ = constant, we can immediately integrate (1.6) and thus obtain the metric component exp(B). Also (1.8) can be integrated. Then, after some more elementary integrations, we can make use of the boundary conditions. Finally, we arrive at the interior and exterior Schwarzschild solution for a spherically symmetric body:

 (1.12)

with

 (1.13)

For the sun we have Mּ ≈ 2 × 1030 kg, Rּ ≈ 7 × 108 m and subsequently ρּ ≈ 1.4×103 kg m3. This leads to ˆR ≈ 3×1011, i.e. the radius of the star Rּ is much smaller than ˆR : Rּ < ˆR . Hence the square roots in (1.12) remain real.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.