المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

استحباب تعميق القبر بقدر القامة
17-12-2015
تاريخ الصحافة النسوية في العراق حتى عام 1968
6/12/2022
تجربة بلازما
19-3-2017
Vowel systems START
2024-04-16
أنواع خطط العلاقات العامة- التصنيف على أساس المدة الزمنية
4-8-2022
أصناف البندق
2023-11-07

Carl Friedrich Hindenburg  
  
682   02:16 صباحاً   date: 21-3-2016
Author : Dz Kutlumuratov
Book or Source : The development of combinatorial methods of mathematics (Russian)
Page and Part : ...


Read More
Date: 29-6-2016 987
Date: 29-3-2016 3900
Date: 23-3-2016 1552

Born: 13 July 1741 in Dresden, Germany
Died: 17 March 1808 in Leipzig, Germany

 

Carl Friedrich Hindenburg was the son of a merchant. He did not attend school but his father arranged that he be taught privately in his home by a tutor. Hindenburg entered the University of Leipzig in 1757 but at this stage his interests were not focused on mathematics, rather he was interested in a wide range of subjects. he took courses in medicine, philosophy, Latin, Greek, physics, mathematics, and aesthetics.

Christian Fürchtegott Gellert, whose whole career was spent at the University of Leipzig, had been promoted to professor there six years before Hindenburg entered the university. Gellert's lectures on poetry, rhetoric, and ethics were exceptionally popular. Gellert, who tutored Hindenburg, arranged with him that he should take on the task of accompanying a student named Schönborn through his education.

This was an important event for Hindenburg for Schönborn's increasing interest in mathematics took Hindenburg in that direction too. As well as at Leipzig, Schönborn studied at Göttingen and while he was there Hindenburg became a friend of Kästner, who had himself taught at Leipzig earlier in his career. Through this Hindenburg did not neglect his own studies and he was awarded a Master's degree from the University of Leipzig in 1771 and appointed as a Privatdozent there in that year.

Even before his appointment as a Privatdozent, Hindenburg had published articles but these were not in mathematics. In 1763 and 1769 he published on philology which is the study of language. His first papers on mathematics were published in 1776 when he studied series. Two years later he published his first papers on combinatorics, the topic for which he became famous.

Hindenburg published a series of works on combinatorial mathematics, in particular probability, series and formulae for higher differentials. Hindenburg hoped for combinatorial operations to have the same importance as those of arithmetic, algebra and analysis but his expectations were not realised. He is recognised, however, as starting [2]:-

... the first scientific school of combinatorial mathematics.

Although essentially forgotten now, Hindenburg's combinatorics was very fashionable 1800 although it is now clear that its importance being much overestimated. His ideas centred around the so-called polynomial theorem which was a generalisation of the binomial theorem. It would be too easy to dismiss Hindenburg's combinatorics, however, for they had some important consequences. Gudermann, best known as the teacher of Weierstrass, worked on the expansion of functions into power series and, as shown by Manning in [4], it was Hindenburg's combinatorial analysis which was the main influence on this work.

In 1781 Hindenburg was appointed as professor of philosophy in the University of Leipzig. After presenting a dissertation on water pumps, he was appointed as professor of physics in 1786. This later post was one which he continued to hold until his death over twenty years later.

It was not only for his school of combinatorial analysis that Hindenburg is famous. He also made important contributions to publishing mathematics in Germany. Between 1780 and 1800 he was involved at different times with the publishing of four different journals all relating to mathematics and its applications.


 

  1. K Haas, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830902007.html

Books:

  1. Dz Kutlumuratov, The development of combinatorial methods of mathematics (Russian), Izdat. 'Karakalpakija' (Nukus, 1964).

Articles:

  1. M Cantor, Vorlesungen über Geschichte der Mathematik IV (Leipzig, 1908).
  2. K R Manning, The emergence of the Weierstrassian approach to complex analysis, Arch. History Exact Sci. 14 (4) (1975), 297-383.
  3. E P Ozhigova, The origins of symbolic and combinatorial methods at the end of the 18th and at the beginning of the 19th century (Russian), Istor.-Mat. Issled. No. 24 (1979), 121-157; 387.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.