المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
استخدامات الطاقة الشمسية Uses of Solar Radiation
2024-11-28
Integration of phonology and morphology
2024-11-28
تاريخ التنبؤ الجوي
2024-11-28
كمية الطاقة الشمسية الواصلة للأرض Solar Constant
2024-11-28
صفاء السماء Sky Clearance
2024-11-28
زاوية ميلان المحور Obliquity
2024-11-28

إخفاء أو تغيير البيانات المتعلقة بالشاهد
13/9/2022
Chain Isomers in Pentane
30-6-2019
أهم التعاريف لمصطلح التنمية
28-11-2018
نمرود
2023-03-27
التمثيل (التماثل)
2023-07-31
عوامل تقدم السياحة - تسهيلات وخدمات أخرى
9-1-2018

Benjamin Bramer  
  
1084   01:51 صباحاً   date: 26-10-2015
Author : P A Kirchvogel
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 15-1-2016 1089
Date: 13-1-2016 4306
Date: 12-1-2016 1593

Born: 15 February 1588 in Felsberg, Germany
Died: 17 March 1652 in Ziegenhain, Germany

 

Benjamin Bramer's father was a minister in the Protestant Church but he sadly died when his son Benjamin was three years old. Benjamin had a much older sister who was married, and this sister and her husband, who was the mathematician and instrument maker Bürgi, became Benjamin's foster parents on the death of his father. Benjamin was taken to their home in Kassel and there he was brought up. Although, of course, nothing could compensate for the death of his father, nevertheless Benjamin was very fortunate, for in Bürgi he had one of the most skilful private tutors that any young boy of the time could have had. Bürgi tutored Bramer in a wide range of subjects but it was mathematics that he loved and he passed this love on to Bramer. As he grew older Bramer became interested in combining his skills in mathematics with architecture as we explain below.

The Holy Roman Emperor Rudolf II was trying to establish a science centre in Prague and had learnt of Bürgi's exceptional skills as an instrument maker. Bürgi was appointed to the imperial court in Prague and Bramer went with him to Prague when he was 16 years old, remaining there for about five years. The move in no way disrupted Bramer's education for he had none other than the instruction he received from his foster father (who was also of course his brother-in-law). Bramer left Prague in 1609 and returned to Kassel. He was soon in demand for his skills in architecture, particularly in fortifications, but before we give some details of the various projects he worked on it is useful to examine the political background.

In 1567, on the death of Philip the Magnanimous, Hesse was partitioned into four landgraviates, with Marburg as the centre of the independent Hesse-Marburg landgraviate with William IV "The Wise" as Landgrave. In 1604, the year Bramer left Kassel for Prague, parts this landgraviate was added to the landgraviate of Hesse-Kassel under the control of the Landgrave Moritz "The Learned", with Kassel as the capital of the landgraviate. Moritz turned Protestant in 1605, so it was to the landgraviate of Hesse-Kassel that Bramer returned in 1609 with tensions rising between a Protestant Landgrave and the Roman Catholic Church. The Landgrave Moritz saw the potential in the skilful young man Bramer who was soon employed by him in directing the constructions of fortifications and castles within the landgraviate of Hesse-Kassel. He was appointed as master builder to the court in Marburg by the Landgrave Moritz in 1612.

In 1618 Bramer advised Count Christian von Waldeck on building a new church in the city of Widungen [1]:-

... it is of special importance because it is one of the earliest plans to introduce central church construction into Protestant German church architecture.

The church, however, was never built for 1618 was the year in which the King of Bohemia attempted to impose the Roman Catholic religion on all his territories and the Protestant Landgraves fought to preserve their religious beliefs. With the outbreak of war there were more important building projects for Bramer to undertake than building churches. He switched to working on the construction of fortifications of Marburg castle and the town of Marburg. On 16 February 1625 Bramer became a naturalised citizen of Marburg and later that year he became consultant to the Count of Solms on improving the fortress at Rheinfels. This fortress, on the Rhine near St Goar, was one of the largest on the Rhine and its foundations had been laid nearly 400 years before Bramer was called to advise on improvements. It had been the subject of one of Dürer's paintings more than 100 years earlier.

The war which had begun in 1618 ended five years later with victory for the Roman Catholic side but this was certainly not an end to conflict in the region. Denmark saw an opportunity to gain territory and another conflict began in 1625 which lasted until 1629 when Denmark was defeated. Sweden, which was anti-Catholic, then invaded and many of the Protestant Landgraves supported the invading armies. Bramer was in charge of the fortifications of Kassel from 1630 to 1634. One must not think that the fighting was a simple conflict between Protestant and Roman Catholic forces. It was much more complicated with Roman Catholicism, Lutheranism, and Calvinism all attempting to gain the upper hand. Kassel became a centre of Calvinist Protestantism in Germany and strong fortifications had to be built to protect it against all its enemies. After working on the Kassel fortifications, Bramer switched in November 1635 to becomemaster builder and treasurer to the fortress of Ziegenhain south of Kassel. Bramer remained at Ziegenhain for the rest of his life. It was not a peaceful time, however, and it was only after the Treaty of Westphalia in 1648 that peace returned. This must have given Bramer some satisfaction coming near the end of his life, for it give full sovereignty to the states of the Holy Roman Empire and ended the domination of the Roman Catholic Church.

Let us now look at Bramer's scientific achievements. His first publication in 1617 was Problema wie aus bekannt gegebenem sinu eines Grades, Minuten oder Sekunden alle folgenden sinus aufs leichtests zu finden und der canon sinuum zu absolvieren sei on the calculation of sines. He also published on the vacuumKurze Meldung vom Vacuo oder leerem Orte, neben anderen wunderbaren und subtilen Quaestionen, desgleichen Nic Cusani Dialogus von Waag und Gewicht [1]:-

The problem of empty space, which had been under active investigation since classical times, was of special topical interest in the seventeenth century. On this matter Bramer held the views of Tommaso Campanella, the contemporary and follower of Galileo.

Bramer followed Alberti (1435), Dürer (1525) and Bürgi (1604) when in 1630 he constructed a device that enabled one to draw accurate geometric perspective. The instrument had been described in a 1617 publication Trigonometrica planorum mechanica oder Unterricht und Beschreibung eines neuen und sehr bequemen geometrischen Instrumentes zu allerhand Abmessung. Bramer designed several other mathematical instruments, for example a description of the pantograph appears in the same 1617 publication. The instrument is designed to copy a geometric shape and reproduce it at a reduced or enlarged scale. It consists of an assemblage of rigid bars adjustably joined by pin joints; as the point of one bar is moved over the outline to be duplicated, the motion is translated to a point on another bar, which makes the desired copy according to the predetermined scale. Bramer has not been recognised as the inventor of the pantograph, this distinction going to the Jesuit Christoph Scheiner who describes a similar instrument in his 1631 publication Pantographice seu acre delineandi res quaslibet by parallelogrammum linear seu cavum mechanicum, mobile. Although Scheiner's publication did much to spread knowledge of the pantograph, the instrument he describes is technically inferior to the earlier instrument as described by Bramer.


 

  1. P A Kirchvogel, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900599.html

Articles:

  1. W Medding, Das Projekt einer Zentalkirche des hessischen Hofbaumeisters Benjamin Bramer, Hessenland, Heimatzeitschrift für Kurhessen 49 (Marburg, 1938), 82-.
  2. F W Strieder, Nouvelles annales de mathématique (Bulletin de biographie) (Paris, 1858), 75-.
  3. E Voellmy, Jost Bürgi und die Logarithmen, Elemente der Math. Beiheft no. 5 (Verlag Birkhäuser, Basel, 1948).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.