المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر



Other forms of energy  
  
926   01:26 صباحاً   التاريخ: 2024-01-25
المؤلف :  Richard Feynman, Robert Leighton and Matthew Sands
الكتاب أو المصدر : The Feynman Lectures on Physics
الجزء والصفحة : Volume I, Chapter 4
القسم : علم الفيزياء / الفيزياء العامة /


أقرأ أيضاً
التاريخ: 21-11-2019 1271
التاريخ: 2023-09-27 1118
التاريخ: 12-12-2016 2025
التاريخ: 20-6-2016 4703

We can continue in this way to illustrate the existence of energy in other forms. First, consider elastic energy. If we pull down on a spring, we must do some work, for when we have it down, we can lift weights with it. Therefore, in its stretched condition it has a possibility of doing some work. If we were to evaluate the sums of weights times heights, it would not check out—we must add something else to account for the fact that the spring is under tension. Elastic energy is the formula for a spring when it is stretched. How much energy is it? If we let go, the elastic energy, as the spring passes through the equilibrium point, is converted to kinetic energy and it goes back and forth between compressing or stretching the spring and kinetic energy of motion. (There is also some gravitational energy going in and out, but we can do this experiment “sideways” if we like.) It keeps going until the losses—Aha! We have cheated all the way through by putting on little weights to move things or saying that the machines are reversible, or that they go on forever, but we can see that things do stop, eventually. Where is the energy when the spring has finished moving up and down? This brings in another form of energy: heat energy.

Inside a spring or a lever there are crystals which are made up of lots of atoms, and with great care and delicacy in the arrangement of the parts one can try to adjust things so that as something rolls on something else, none of the atoms do any jiggling at all. But one must be very careful. Ordinarily when things roll, there is bumping and jiggling because of the irregularities of the material, and the atoms start to wiggle inside. So, we lose track of that energy; we find the atoms are wiggling inside in a random and confused manner after the motion slows down. There is still kinetic energy, all right, but it is not associated with visible motion. What a dream! How do we know there is still kinetic energy? It turns out that with thermometers you can find out that, in fact, the spring or the lever is warmer, and that there is really an increase of kinetic energy by a definite amount. We call this form of energy heat energy, but we know that it is not really a new form, it is just kinetic energy—internal motion. (One of the difficulties with all these experiments with matter that we do on a large scale is that we cannot really demonstrate the conservation of energy and we cannot really make our reversible machines, because every time we move a large clump of stuff, the atoms do not remain absolutely undisturbed, and so a certain amount of random motion goes into the atomic system. We cannot see it, but we can measure it with thermometers, etc.)

There are many other forms of energy, and of course we cannot describe them in any more detail just now. There is electrical energy, which has to do with pushing and pulling by electric charges. There is radiant energy, the energy of light, which we know is a form of electrical energy because light can be represented as wigglings in the electromagnetic field. There is chemical energy, the energy which is released in chemical reactions. Actually, elastic energy is, to a certain extent, like chemical energy, because chemical energy is the energy of the attraction of the atoms, one for the other, and so is elastic energy. Our modern understanding is the following: chemical energy has two parts, kinetic energy of the electrons inside the atoms, so part of it is kinetic, and electrical energy of interaction of the electrons and the protons—the rest of it, therefore, is electrical. Next, we come to nuclear energy, the energy which is involved with the arrangement of particles inside the nucleus, and we have formulas for that, but we do not have the fundamental laws. We know that it is not electrical, not gravitational, and not purely kinetic, but we do not know what it is. It seems to be an additional form of energy. Finally, associated with the relativity theory, there is a modification of the laws of kinetic energy, or whatever you wish to call it, so that kinetic energy is combined with another thing called mass energy. An object has energy from its sheer existence. If I have a positron and an electron, standing still doing nothing—never mind gravity, never mind anything—and they come together and disappear, radiant energy will be liberated, in a definite amount, and the amount can be calculated. All we need know is the mass of the object. It does not depend on what it is—we make two things disappear, and we get a certain amount of energy. The formula was first found by Einstein; it is E=mc2.

It is obvious from our discussion that the law of conservation of energy is enormously useful in making analyses, as we have illustrated in a few examples without knowing all the formulas. If we had all the formulas for all kinds of energy, we could analyze how many processes should work without having to go into the details. Therefore, conservation laws are very interesting. The question naturally arises as to what other conservation laws there are in physics. There are two other conservation laws which are analogous to the conservation of energy. One is called the conservation of linear momentum. The other is called the conservation of angular momentum. We will find out more about these later. In the last analysis, we do not understand the conservation laws deeply. We do not understand the conservation of energy. We do not understand energy as a certain number of little blobs. You may have heard that photons come out in blobs and that the energy of a photon is Planck’s constant times the frequency. That is true, but since the frequency of light can be anything, there is no law that says that energy has to be a certain definite amount. Unlike Dennis’ blocks, there can be any amount of energy, at least as presently understood. So, we do not understand this energy as counting something at the moment, but just as a mathematical quantity, which is an abstract and rather peculiar circumstance. In quantum mechanics it turns out that the conservation of energy is very closely related to another important property of the world, things do not depend on the absolute time. We can set up an experiment at a given moment and try it out, and then do the same experiment at a later moment, and it will behave in exactly the same way. Whether this is strictly true or not, we do not know. If we assume that it is true, and add the principles of quantum mechanics, then we can deduce the principle of the conservation of energy. It is a rather subtle and interesting thing, and it is not easy to explain. The other conservation laws are also linked together. The conservation of momentum is associated in quantum mechanics with the proposition that it makes no difference where you do the experiment, the results will always be the same. As independence in space has to do with the conservation of momentum, independence of time has to do with the conservation of energy, and finally, if we turn our apparatus, this too makes no difference, and so the invariance of the world to angular orientation is related to the conservation of angular momentum. Besides these, there are three other conservation laws, that are exact so far as we can tell today, which are much simpler to understand because they are in the nature of counting blocks.

The first of the three is the conservation of charge, and that merely means that you count how many positive, minus how many negative electrical charges you have, and the number is never changed. You may get rid of a positive with a negative, but you do not create any net excess of positives over negatives. Two other laws are analogous to this one—one is called the conservation of baryons. There are a number of strange particles, a neutron and a proton are examples, which are called baryons. In any reaction whatever in nature, if we count how many baryons are coming into a process, the number of baryons3 which come out will be exactly the same. There is another law, the conservation of leptons. We can say that the group of particles called leptons are: electron, muon, and neutrino. There is an antielectron which is a positron, that is, a −1 lepton. Counting the total number of leptons in a reaction reveals that the number in and out never changes, at least so far as we know at present.

These are the six conservation laws, three of them subtle, involving space and time, and three of them simple, in the sense of counting something.

With regard to the conservation of energy, we should note that available energy is another matter—there is a lot of jiggling around in the atoms of the water of the sea, because the sea has a certain temperature, but it is impossible to get them herded into a definite motion without taking energy from somewhere else. That is, although we know for a fact that energy is conserved, the energy available for human utility is not conserved so easily. The laws which govern how much energy is available are called the laws of thermodynamics and involve a concept called entropy for irreversible thermodynamic processes.

Finally, we remark on the question of where we can get our supplies of energy today. Our supplies of energy are from the sun, rain, coal, uranium, and hydrogen. The sun makes the rain, and the coal also, so that all these are from the sun. Although energy is conserved, nature does not seem to be interested in it; she liberates a lot of energy from the sun, but only one part in two billion falls on the earth. Nature has conservation of energy, but does not really care; she spends a lot of it in all directions. We have already obtained energy from uranium; we can also get energy from hydrogen, but at present only in an explosive and dangerous condition. If it can be controlled in thermonuclear reactions, it turns out that the energy that can be obtained from 10 quarts of water per second is equal to all of the electrical power generated in the United States. With 150 gallons of running water a minute, you have enough fuel to supply all the energy which is used in the United States today! Therefore, it is up to the physicist to figure out how to liberate us from the need for having energy. It can be done.

_____________________________________________________
Margin

3- Counting antibaryons as −1 baryon.

 




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.