المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر

Helicases
19-7-2018
أنواع التلوث - أنواع التلوث بالنظر إلى طبيعته- التلوث الإشعاعي Radioactive Pollution
16/12/2022
سجود الشكر
4-9-2016
الشيخ حسين بن علاء الدين المظفر
4-7-2017
شروط وقف تنفيذ القرار الاداري
13-6-2016
أحمد مفتاح
4-8-2018

Gaspar Lax  
  
1358   03:04 مساءاً   date: 22-10-2015
Author : C P Calderón
Book or Source : The 16th-century Iberian calculatores, Rev. Un. Mat. Argentina 35
Page and Part : ...


Read More
Date: 22-10-2015 2294
Date: 22-10-2015 1109
Date: 25-10-2015 1927

Born: 1487 in Sarinena, Aragon, Spain
Died: 23 February 1560 in Zaragoza, Spain

 

After studying arts and theology at the University of Zaragoza, where he obtained a first degree, Gaspar Lax went to Paris where he took further degrees including a divinity degree taken at the Sorbonne. Lax remained in Paris and taught there at the Collège de Calvi during 1507 and 1508. The Collège de Sorbonne was a theological college of the University of Paris, founded in 1257 by Robert de Sorbon. In about 1271 Sorbon had added the Collège de Calvi which was a literary college that became known as the "little Sorbonne".

After these two years at the Collège de Calvi, Lax transferred to the Collège de Montaigu, one of the leading theological colleges of Paris, where he studied under Maior but also was an important teacher at the College. One of Lax's fellow countrymen, who was also studying under Maior, wrote to the representative of the Spanish King in Paris:-

I am following the theology course of John Maior with great interest as he is a deeply knowledgeable man whose virtue is as great as his faith. ... may the eternal king deign to grant him long life that he may for long years be useful to our alma mater, the University of Paris.

In 1517 Lax returned to teach again at the Collège de Calvi which he did for the next six years. These were years in which France was engaged in various wars and disputes particularly against Spain and its possessions. Charles I of Spain became the Holy Roman Emperor Charles V in 1519. Francis I had become king of France in 1515 and in that year he took Milan. Charles V visited Spain in 1522 and France felt threatened from all sides. Between 1521 and 1523 the French were expelled from Genoa and the area around Milan, but this led to a French counter attack in 1523. In that year foreigners were asked to leave the Collège de Calvi and shortly after this Lax decided to return to his native land. The conflict between Francis I of France and Holy Roman Emperor Charles V continued.

In 1524 Lax left France and returned to Spain. He was appointed professor at the University of Zaragoza and remained there for the rest of his life. He did achieve certain higher posts within the University of Zaragoza, eventually becoming Vice Chancellor and Rector.

Lax published several good mathematics books based on works by Boethius, Euclid, Jordanus and Campanus. He was one of the Spanish school of "calculatores" who studied mechanics, being particularly involved with numerical examples, and using as their main tools the elements of proportion theory and infinitesimal arithmetic. This school seems to have originated with Lax and other students of Maior who studied in Paris, then returned to Spain.

Lax was also known as a philosopher, often called the 'Prince of Sophists'. Almost certainly Maior's influence was one of the main reasons he studied logical subtleties. However, one of Lax's students wrote that he heard Lax express regret late in his career that he had spent so much time on 'such trivialities'.

Lax published Arithmetica speculativa (1515) which, according to the historian D E Smith, was:-

... a very prolix treatment of theoretical arithmetic based on Boethius and his medieval successors.

Another work by Lax in the same year was Proportiones [1]:-

... a more compact and formalistic treatment of ratios, with citations of Euclid, Jordanus and Campanus; unlike most sixteenth-century treatises on ratios, however, it does not deal with the velocities of motion in the Mertonian and Parisian traditions.

He also published Quaestiones phisicales in 1527 but this text does not appear to have survived.


 

  1. W A Wallace, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830902510.html

Articles:

  1. C P Calderón, The 16th-century Iberian calculatores, Rev. Un. Mat. Argentina 35 (1989), 245-258.
  2. H Elie, Quelques maitres de l'université de Paris vers l'an 1500, Archives d'histoire doctrinal et littéraire du moyen âge 18 (1950-51), 193-243.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.