المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

بداية تحولات البلوغ
2024-10-15
اعرف قيمة الحدود
14-3-2018
Graham,s Number
28-3-2022
التاثير الضار لارتفاع حموضة التربة على المحاصيل الزراعية
19-7-2017
هل الإنسان عجولا بطبيعته
26-10-2014
مميزات مرحلة الشباب / المثالية
14-3-2022

Herbrand,s Theorem  
  
718   01:31 صباحاً   date: 24-1-2022
Author : Ireland, K. and Rosen, M.
Book or Source : "Herbrand,s Theorem." §15.3 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag,
Page and Part : pp. 241-248


Read More
Date: 23-1-2022 492
Date: 17-2-2022 2334
Date: 13-2-2022 781

Herbrand's Theorem

There are two important theorems known as Herbrand's theorem.

The first arises in ring theory. Let an ideal class be in A if it contains an ideal whose lth power is principal. Let i be an odd integer 1<=i<=l and define j by i+j=1. Then A_1=<e>. If i>=3 and lB_j, then A_i=<e>.

The Herbrand theorem in logic states that a formula Phi is unsatisfiable iff there is a finite set of ground clauses of S that is unsatisfiable in propositional calculus. It is assumed that elements of the Herbrand base are treated as propositional variables. Since unsatisfiability is dual to validity (Phi is unsatisfiable iff the negation !Phi is valid), the Herbrand theorem establishes that the Herbrand universe alone is sufficient for interpretation of first-order logic. This theorem also reduces the question of unsatisfiability in first-order logic to the question of unsatisfiability in propositional calculus.


REFERENCES

Ireland, K. and Rosen, M. "Herbrand's Theorem." §15.3 in A Classical Introduction to Modern Number Theory, 2nd ed. New York: Springer-Verlag, pp. 241-248, 1990.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.