المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
زكاة الغلات
2024-11-05
تربية أنواع ماشية اللحم
2024-11-05
زكاة الذهب والفضة
2024-11-05
ماشية اللحم في الولايات المتحدة الأمريكية
2024-11-05
أوجه الاستعانة بالخبير
2024-11-05
زكاة البقر
2024-11-05

الرؤية المكانية لنشأة المدينة وتطورها
11-8-2021
اطلاق الاحياء المهندسة وراثيا الى البيئة
3-2-2016
حكم المحرم إذا لم يتمكن من دفع الإبل.
18-4-2016
المسكر المائع نجس
4-6-2019
أبو تمام
5-10-2015
الزراعة الهوائية
21-11-2017

Categorical Axiomatic System  
  
568   06:04 مساءً   date: 27-12-2021
Author : Smart, J.
Book or Source : "Finite Geometries and Axiomatic Systems." 2002. http://www.beva.org/math323/asgn5/nov5.htm.
Page and Part : ...


Read More
Date: 4-1-2022 839
Date: 14-2-2017 1492
Date: 13-1-2022 1085

Categorical Axiomatic System

An axiomatic system is said to be categorical if there is only one essentially distinct representation for it. In particular, the names and types of objects within the system may vary while still being considered "the same," e.g., geometries and their plane duals.

An example of an axiomatic system which isn't categorical is a geometry described by the following four axioms (Smart):

1. There exist five points.

2. Each line is a subset of those five points.

3. There exist two lines.

4. Each line contains at least two points.

One way to see that this is a non-categorical axiomatic system is to note that one can form a compatible system from two fundamentally different models, e.g.,

1. Two disjoint lines each containing two points plus a separate point not on either line.

2. Two lines containing three points each which intersect in one of the points.

The presence of an intersection in one model and not the other implies that the models are fundamentally different and hence are inequivalent.


REFERENCES:

Smart, J. "Finite Geometries and Axiomatic Systems." 2002. http://www.beva.org/math323/asgn5/nov5.htm.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.