المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
الوفاء بالعهد
2024-11-05
النابذون ولاية محمد واله وراء ظهورهم لهم عذاب اليم
2024-11-05
Rise-fall Λyes Λno
2024-11-05
Fall-rise vyes vno
2024-11-05
Rise/yes/no
2024-11-05
ماشية اللحم كالميك في القوقاز Kalmyk breed
2024-11-05

مبررات تنظيم استخدامات الأراضي داخل المدن
12/10/2022
ما مدى علم الامام الهادي عليه السلام ؟
23-12-2021
من تراث الشهيد: في رحاب الفقه والأحكام الشرعية
29-7-2022
آداب الدعاء / العمل بما تقتضيه المعرفة.
2024-03-30
Fortification
16-5-2018
بينه ، جاك
14-8-2016

B-Spline  
  
931   07:30 مساءً   date: 18-11-2021
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : www.almerja.com
Page and Part : ...


Read More
Date: 25-11-2021 988
Date: 25-11-2021 854
Date: 23-11-2021 1498

B-Spline

 

BSpline

A B-spline is a generalization of the Bézier curve. Let a vector known as the knot vector be defined

 T={t_0,t_1,...,t_m},

(1)

where T is a nondecreasing sequence with t_i in [0,1], and define control points P_0, ..., P_n. Define the degree as

 p=m-n-1.

(2)

The "knots" t_(p+1), ..., t_(m-p-1) are called internal knots.

Define the basis functions as

N_(i,0)(t) = {1 if t_i<=t<t_(i+1) and t_i<t_(i+1); 0 otherwise

(3)

N_(i,j)(t) = (t-t_i)/(t_(i+j)-t_i)N_(i,j-1)(t)+(t_(i+j+1)-t)/(t_(i+j+1)-t_(i+1))N_(i+1,j-1)(t),

(4)

where j=1, 2, ..., p. Then the curve defined by

 C(t)=sum_(i=0)^nP_iN_(i,p)(t)

(5)

is a B-spline.

Specific types include the nonperiodic B-spline (first p+1 knots equal 0 and last p+1 equal to 1; illustrated above) and uniform B-spline (internal knots are equally spaced). A B-spline with no internal knots is a Bézier curve.

A curve is p-k times differentiable at a point where k duplicate knot values occur. The knot values determine the extent of the control of the control points.

B-splines are implemented in the Wolfram Language as BSplineCurve[pts].




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.