المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

الخلاف بين المدرستين
2-03-2015
المعلّى بن خنيس البزاز الكوفي وهشام بن السائب الكلبي
17-04-2015
التأثير الكهروضوئي الداخلي
23-6-2021
اختلاف القراءات وعلاقته بحجية القران
5-9-2016
فتنة بغداد وسامرا
31-1-2018
Displacement
13-9-2020

Euclidean Space  
  
1169   07:25 مساءً   date: 2-8-2021
Author : Gray, A.
Book or Source : "Euclidean Spaces." §1.1 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press
Page and Part : ...


Read More
Date: 27-6-2021 1265
Date: 1-8-2021 1669
Date: 20-7-2021 2031

Euclidean Space

Euclidean n-space, sometimes called Cartesian space or simply n-space, is the space of all n-tuples of real numbers, (x_1x_2, ..., x_n). Such n-tuples are sometimes called points, although other nomenclature may be used (see below). The totality of n-space is commonly denoted R^n, although older literature uses the symbol E^n (or actually, its non-doublestruck variant E^n; O'Neill 1966, p. 3).

R^n is a vector space and has Lebesgue covering dimension n. For this reason, elements of R^n are sometimes called n-vectors. R^1=R is the set of real numbers (i.e., the real line), and R^2 is called the Euclidean plane. In Euclidean space, covariant and contravariant quantities are equivalent so e^->^j=e^->_j.


 

REFERENCES:

Gray, A. "Euclidean Spaces." §1.1 in Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton, FL: CRC Press, pp. 2-5, 1997.

O'Neill, B. Elementary Differential Geometry. San Diego, CA: Academic Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.