المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

العناصر الطبيعية في النقل على اليابس
2024-06-24
ليدرو ، فيليب
29-11-2015
العقيلة (عليها السّلام) مع الهاشميّين والأصحاب
6-10-2017
مَنْ لَمْ يُنَاصِحْ أَخَاهُ الْمُؤْمِنَ‏ - بحث روائي
5-10-2016
يوسف بن ناصر الحسيني
10-8-2016
Bernt Michael Holmboe
19-7-2016

Morton-Franks-Williams Inequality  
  
1824   05:18 مساءً   date: 7-6-2021
Author : Franks, J. and Williams, R. F.
Book or Source : "Braids and the Jones Polynomial." Trans. Amer. Math. Soc. 303
Page and Part : ...


Read More
Date: 28-7-2021 3025
Date: 29-7-2021 1501
Date: 22-5-2021 1913

Morton-Franks-Williams Inequality

Let E be the largest and e the smallest power of l in the HOMFLY polynomial of an oriented link, and i be the braid index. Then the Morton-Franks-Williams inequality holds,

 i>=1/2(E-e)+1

(Morton 1986, 1988, Franks and Williams 1987). The inequality is sharp for all prime knots up to 10 crossings with the exceptions of 09-042, 09-049, 10-132, 10-150, and 10-156.


REFERENCES:

Franks, J. and Williams, R. F. "Braids and the Jones Polynomial." Trans. Amer. Math. Soc. 303, 97-108, 1987.

Morton, H. R. "Seifert Circles and Knot Polynomials." Math. Proc. Cambridge Philos. Soc. 99, 107-109, 1986.

Morton, H. R. "Polynomials from Braids." In Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference in Mathematical Sciences on Artin's Braid Group held at the University of California, Santa Cruz, California, July 13-26, 1986 (Ed. J. S. Birman and A. Libgober). Providence, RI: Amer. Math. Soc., pp. 575-585, 1988.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.