Read More
Date: 15-2-2021
![]()
Date: 2-3-2021
![]()
Date: 8-3-2021
![]() |
A real-valued stochastic process is a Brownian motion which starts at
if the following properties are satisfied:
1. .
2. For all times , the increments
,
, ...,
, are independent random variables.
3. For all ,
, the increments
are normally distributed with expectation value zero and variance
.
4. The function is continuous almost everywhere. The Brownian motion
is said to be standard if
.
It is easily shown from the above criteria that a Brownian motion has a number of unique natural invariance properties including scaling invariance and invariance under time inversion. Moreover, any Brownian motion satisfies a law of large numbers so that
![]() |
almost everywhere. Moreover, despite looking ill-behaved at first glance, Brownian motions are Hölder continuous almost everywhere for all values . Contrarily, any Brownian motion is nowhere differentiable almost surely.
The above definition is extended naturally to get higher-dimensional Brownian motions. More precisely, given independent Brownian motions which start at
, one can define a stochastic process
by
![]() |
Such a is called a
-dimensional Brownian motion which starts at
.
REFERENCES:
Mörters, P. and Peres, Y. "Brownian Motion." 2008. http://www.stat.berkeley.edu/~peres/bmbook.pdf.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
ملاكات العتبة العباسية المقدسة تُنهي أعمال غسل حرم مرقد أبي الفضل العباس (عليه السلام) وفرشه
|
|
|