Read More
Date: 7-8-2020
559
Date: 1-2-2021
1092
Date: 24-4-2020
768
|
Let and be Lucas sequences generated by and , and define
(1) |
Let be an odd composite number with , and with odd and , where is the Legendre symbol. If
(2) |
or
(3) |
for some with , then is called a strong Lucas pseudoprime with parameters .
A strong Lucas pseudoprime is a Lucas pseudoprime to the same base. Arnault (1997) showed that any composite number is a strong Lucas pseudoprime for at most 4/15 of possible bases (unless is the product of twin primes having certain properties).
REFERENCES:
Arnault, F. "The Rabin-Monier Theorem for Lucas Pseudoprimes." Math. Comput. 66, 869-881, 1997.
Ribenboim, P. "Euler-Lucas Pseudoprimes (elpsp()) and Strong Lucas Pseudoprimes (slpsp())." §2.X.C in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 130-131, 1996.
|
|
علامات بسيطة في جسدك قد تنذر بمرض "قاتل"
|
|
|
|
|
أول صور ثلاثية الأبعاد للغدة الزعترية البشرية
|
|
|
|
|
وفد كلية الزراعة في جامعة كربلاء يشيد بمشروع الحزام الأخضر
|
|
|