Read More
Date: 11-10-2020
1437
Date: 1-8-2020
1098
Date: 12-12-2020
926
|
Let be an elliptic curve defined over the field of rationals having equation
with and integers. Let be a point on with integer coordinates and having infinite order in the additive group of rational points of , and let be a composite natural number such that , where is the Jacobi symbol. Then if
is called an elliptic pseudoprime for .
REFERENCES:
Balasubramanian, R. and Murty, M. R. "Elliptic Pseudoprimes. II." In Séminaire de Théorie des Nombres, Paris 1988-1989 (Ed. C. Goldstein). Boston, MA: Birkhäuser, pp. 13-25, 1990.
Gordon, D. M. "The Number of Elliptic Pseudoprimes." Math. Comput. 52, 231-245, 1989.
Gordon, D. M. "Pseudoprimes on Elliptic Curves." In Number Theory--Théorie des nombres:Proceedings of the International Number Theory Conference Held at Université Laval in 1987 (Ed. J. M. DeKoninck and C. Levesque). Berlin: de Gruyter, pp. 290-305, 1989.
Miyamoto, I. and Murty, M. R. "Elliptic Pseudoprimes." Math. Comput. 53, 415-430, 1989.
Ribenboim, P. The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 132-134, 1996.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|