 
					
					
						Fibonacci Hyperbolic Functions					
				 
				
					
						 المؤلف:  
						Sloane, N. J. A
						 المؤلف:  
						Sloane, N. J. A					
					
						 المصدر:  
						Sequences A001519/M1439, A001906/M2741, A002390/M3318, and A104457 in "The On-Line Encyclopedia of Integer Sequences."
						 المصدر:  
						Sequences A001519/M1439, A001906/M2741, A002390/M3318, and A104457 in "The On-Line Encyclopedia of Integer Sequences."					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 5-12-2020
						5-12-2020
					
					
						 989
						989					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Fibonacci Hyperbolic Functions
Let
(OEIS A104457), where  is the golden ratio, and
 is the golden ratio, and
(OEIS A002390).

Define the Fibonacci hyperbolic sine by
The function satisfies
	
		
			|  | (9) | 
	
and for  ,
,
	
		
			|  | (10) | 
	
where  is a Fibonacci number. For
 is a Fibonacci number. For  , 2, ..., the values are therefore 1, 3, 8, 21, 55, ... (OEIS A001906).
, 2, ..., the values are therefore 1, 3, 8, 21, 55, ... (OEIS A001906).

Define the Fibonacci hyperbolic cosine by
This function satisfies
	
		
			|  | (14) | 
	
and for  ,
,
	
		
			|  | (15) | 
	
where  is a Fibonacci number. For
 is a Fibonacci number. For  , 2, ..., the values are therefore 2, 5, 13, 34, 89, ... (OEIS A001519).
, 2, ..., the values are therefore 2, 5, 13, 34, 89, ... (OEIS A001519).

Similarly, the Fibonacci hyperbolic tangent is defined by
	
		
			|  | (16) | 
	
and for  ,
,
	
		
			|  | (17) | 
	
For  , 2, ..., the values are therefore 1/2, 3/5, 8/13, 21/34, 55/89, ... (OEIS A001906 and A001519).
, 2, ..., the values are therefore 1/2, 3/5, 8/13, 21/34, 55/89, ... (OEIS A001906 and A001519).
REFERENCES:
Sloane, N. J. A. Sequences A001519/M1439, A001906/M2741, A002390/M3318, and A104457 in "The On-Line Encyclopedia of Integer Sequences."
Stakhov, A. and Tkachenko, I. "Hyperbolic Fibonacci Trigonometry." Dokl. Akad. Nauk Ukrainy, No. 7, 9-14, 1993.
Trzaska, Z. W. "On Fibonacci Hyperbolic Trigonometry and Modified Numerical Triangles." Fib. Quart. 34, 129-138, 1996.
				
				
					
					 الاكثر قراءة في  نظرية الاعداد
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة