Read More
Date: 30-10-2019
827
Date: 25-1-2021
663
Date: 14-7-2020
748
|
Given two starting numbers , the following table gives the unique sequences that contain no three-term arithmetic progressions.
Sloane | sequence |
A003278 | 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, ... |
A033156 | 1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, ... |
A033157 | 1, 4, 5, 8, 10, 13, 14, 17, 28, 31, 32, 35, ... |
A033158 | 1, 5, 6, 8, 12, 13, 17, 24, 27, 32, 34, 38, ... |
A033159 | 2, 3, 5, 6, 11, 12, 14, 15, 29, 30, 32, 33, ... |
A033160 | 2, 4, 5, 7, 11, 13, 14, 16, 29, 31, 32, 34, ... |
A033161 | 2, 5, 6, 9, 11, 14, 15, 18, 29, 32, 33, 36, ... |
A033162 | 3, 4, 6, 7, 12, 13, 15, 16, 30, 31, 33, 34, ... |
A033163 | 3, 5, 6, 8, 12, 14, 15, 17, 30, 32, 33, 35, ... |
A033164 | 4, 5, 7, 8, 13, 14, 16, 17, 31, 32, 34, 35, ... |
REFERENCES:
Allouche, J.-P. and Shallit, J. "The Ring of k-Regular Sequences." Theor. Comput. Sci. 98, 163-197, 1992.
Erdős, P. and Turán, P. "On Some Sequences of Integers." J. London Math. Soc. 11, 261-264, 1936.
Gerver, J.; Propp, J.; and Simpson, J. "Greedily Partitioning the Natural Numbers into Sets Free of Arithmetic Progressions." Proc. Amer. Math. Soc. 102, 765-772, 1988.
Guy, R. K. "Theorem of van der Waerden, Szemerédi's Theorem. Partitioning the Integers into Classes; at Least One Contains an A.P." §E10 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 204-209, 1994.
Iacobescu, F. "Smarandache Partition Type and Other Sequences." Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Ibstedt, H. "A Few Smarandache Sequences." Smarandache Notions J. 8, 170-183, 1997.
Sloane, N. J. A. Sequences A003278/M0975, A033156, A033157, A033158, A033159, A033160, A033161, A033162, A033163, and A033164 in "The On-Line Encyclopedia of Integer Sequences."
|
|
لصحة القلب والأمعاء.. 8 أطعمة لا غنى عنها
|
|
|
|
|
حل سحري لخلايا البيروفسكايت الشمسية.. يرفع كفاءتها إلى 26%
|
|
|
|
|
جامعة الكفيل: شراكتنا مع المؤسّسات الرائدة تفتح آفاقًا جديدة للارتقاء بجودة التعليم الطبّي في العراق
|
|
|