المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر


Floor Function  
  
898   03:52 مساءً   date: 20-10-2020
Author : Borwein, J.; Bailey, D.; and Girgensohn, R.
Book or Source : Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.
Page and Part : ...


Read More
Date: 4-2-2020 725
Date: 1-12-2020 706
Date: 18-10-2020 810

Floor Function

FloorFunction

The floor function |_x_|, also called the greatest integer function or integer value (Spanier and Oldham 1987), gives the largest integer less than or equal to x. The name and symbol for the floor function were coined by K. E. Iverson (Graham et al. 1994).

Unfortunately, in many older and current works (e.g., Honsberger 1976, p. 30; Steinhaus 1999, p. 300; Shanks 1993; Ribenboim 1996; Hilbert and Cohn-Vossen 1999, p. 38; Hardy 1999, p. 18), the symbol [x] is used instead of |_x_| (Graham et al. 1994, p. 67). In fact, this notation harks back to Gauss in his third proof of quadratic reciprocity in 1808. However, because of the elegant symmetry of the floor function and ceiling function symbols |_x_| and [x], and because [x] is such a useful symbol when interpreted as an Iverson bracket, the use of [x] to denote the floor function should be deprecated. In this work, the symbol [x] is used to denote the nearest integer function since it naturally falls between the |_x_| and [x] symbols.

FloorReImAbs
 
 
  Min   Max    
  Re    
  Im      

The floor function is implemented in the Wolfram Language as Floor[z], where it is generalized to complex values of z as illustrated above.

Since usage concerning fractional part/value and integer part/value can be confusing, the following table gives a summary of names and notations used. Here, S&O indicates Spanier and Oldham (1987).

notation name S&O Graham et al. Wolfram Language
[x] ceiling function -- ceiling, least integer Ceiling[x]
mod(m,n) congruence -- -- Mod[m, n]
|_x_| floor function Int(x) floor, greatest integer, integer part Floor[x]
x-|_x_| fractional value frac(x) fractional part or {x} SawtoothWave[x]
sgn(x)(|x|-|_|x|_|) fractional part Fp(x) no name FractionalPart[x]
sgn(x)|_|x|_| integer part Ip(x) no name IntegerPart[x]
nint(x) nearest integer function -- -- Round[x]
m
quotient -- -- Quotient[m, n]

The floor function satisfies the identity

 |_x+n_|=|_x_|+n

(1)

for all integers n.

A number of geometric-like sequences with a floor function in the numerator can be done analytically. For instance, sums of the form

 sum_(n=1)^infty(|_nx_|)/(k^n)

(2)

can be done analytically for rational x. For x=1/m a unit fraction,

 sum_(n=1)^inftyk^(-n)|_n/m_|=k/((k-1)(k^m-1)).

(3)

Sums of this form lead to Devil's staircase-like behavior.

For irrational alpha>0, continued fraction convergents p_n/q_n, and epsilon_n=q_nalpha-p_n,

 |_nalpha+epsilon_N_|={|_nalpha_|   for n<q_(N+1); |_nalpha_|+(-1)^N   for n=q_(N+1)

(4)

(Borwein et al. 2004, p. 12). This leads to the rather amazing result relating sums of the floor function of multiples of alpha to the continued fraction of alpha by

 sum_(n=1)^infty|_nalpha_|z^n=(p_0z)/((1-z)^2)+sum_(n=0)^infty(-1)^n(z^(q_n)z^(q_(n+1)))/((1-z^(q_n))(1-z^(q_(n+1))))

(5)

(Mahler 1929; Borwein et al. 2004, p. 12).


REFERENCES:

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, p. 2, 1991.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. "Integer Functions." Ch. 3 in Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, pp. 67-101, 1994.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination. New York: Chelsea, 1999.

Honsberger, R. Mathematical Gems II. Washington, DC: Math. Assoc. Amer., 1976.

Iverson, K. E. A Programming Language. New York: Wiley, p. 12, 1962.

Mahler, K. "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen." Math. Ann. 101, 342-366, 1929.

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 180-182, 1996.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 14, 1993.

Spanier, J. and Oldham, K. B. "The Integer-Value Int(x) and Fractional-Value frac(x) Functions." Ch. 9 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 71-78, 1987.

Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, 1999.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.