

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Projectively Extended Real Numbers
المؤلف:
Hazewinkel, M. (Managing Ed.).
المصدر:
الجزء والصفحة:
...
18-10-2020
1313
Projectively Extended Real Numbers

The set {infty}" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline1.gif" style="height:15px; width:50px" />, obtained by adjoining one improper element to the set
of real numbers, is the set of projectively extended real numbers. Although notation is not completely standardized,
is used here to denote this set of extended real numbers. With an appropriate topology,
is the one-point compactification (or projective closure) of
. As shown above, the cross section of the Riemann sphere consisting of its "real axis" and "north pole" can be used to visualize
. The improper element, projective infinity (
), then corresponds with the ideal point, the "north pole."
In contrast to the signed affine infinities (
and
) of the affinely extended real numbers
, projective infinity,
, is unsigned, like 0. Regrettably,
is also unordered, i.e., for
it can be said neither that
nor that
. For this reason,
is used much less often in real analysis than is
. Thus, if context is not specified, "the extended real numbers" normally refers to
, not
.
Arithmetic operations can be partially extended from
to
,
![]() |
(1) |
![]() |
(2) |
![]() |
(3) |
![]() |
(4) |
(by contrast,
is undefined in
). The expressions
and
are most often left undefined in
.
The exponential function
cannot be extended to
. On the other hand,
is useful when dealing with rational functions and certain other functions. For example, if
is used as the range of
, then by taking
for integer
, the domain of the function can be extended to all of
.

The above figure shows two intervals on
. One of them is the set of
such that
, and of course it can be written conveniently using ordinary interval notation, as
. But the other interval consisting of
(which may be thought of as a "merger" of the two signed infinities of the affine extension,
) together with all reals
such that either
or
, cannot be indicated so conveniently using ordinary notation.
This might not be of much interest except for the fact that such intervals arise in those systems of interval arithmetic that allow division by intervals containing 0. As an example, consider
. This division can be performed in the Wolfram Language using Interval[{" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline49.gif" style="height:15px; width:5px" />6,7
}" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline50.gif" style="height:15px; width:5px" />]/Interval[
{" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline51.gif" style="height:15px; width:5px" />-3,2
}" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline52.gif" style="height:15px; width:5px" />], which yields Interval[
{" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline53.gif" style="height:15px; width:5px" />-Infinity, -2
}" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline54.gif" style="height:15px; width:5px" />,
{" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline55.gif" style="height:15px; width:5px" />3, Infinity
}" src="https://mathworld.wolfram.com/images/equations/ProjectivelyExtendedRealNumbers/Inline56.gif" style="height:15px; width:5px" />]. This represents
, the union of two intervals in the affine extension. But, as the figure above indicates, the corresponding set in the projective extension is a single interval, and it would be nice to be able to denote it as such. Various conventions have been suggested for denoting such intervals. According to one convention (Reinsch 1982, pp. 88-89), on the number circle representing
, let
denote the closed interval that is traced going in a counterclockwise direction from
to
. According to this definition, for example,
retains its former meaning. But the definition also applies even when
, allowing the answer to the interval division above to be written concisely as
.
REFERENCES:
Hazewinkel, M. (Managing Ed.). Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet "Mathematical Encyclopaedia," Vol. 3. Dordrecht, Netherlands: Reidel, p. 193, 1988.
Reinsch, C. "A Synopsis of Interval Arithmetic for the Designer of Programming Languages." In The Relationship Between Numerical Computation and Programming Languages (Ed. J. K. Reid). Amsterdam, Netherlands: North-Holland, pp. 85-97, 1982.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية





"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)
قسم الشؤون الفكرية يصدر مجموعة قصصية بعنوان (قلوب بلا مأوى)