

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Prime Zeta Function
المؤلف:
Cohen, H.
المصدر:
"High Precision Computation of Hardy-Littlewood Constants." Preprint. http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.
الجزء والصفحة:
...
12-10-2020
1308
Prime Zeta Function

The prime zeta function
![]() |
(1) |
where the sum is taken over primes is a generalization of the Riemann zeta function
![]() |
(2) |
where the sum is over all positive integers. In other words, the prime zeta function
is the Dirichlet generating function of the characteristic function of the primes
.
is illustrated above on positive the real axis, where the imaginary part is indicated in yellow and the real part in red. (The sign difference in the imaginary part compared to the plot appearing in Fröberg is presumably a result of the use of a different convention for
.)
Various terms and notations are used for this function. The term "prime zeta function" and notation
were used by Fröberg (1968), whereas Cohen (2000) uses the notation
.
The series converges absolutely for
, where
, can be analytically continued to the strip
(Fröberg 1968), but not beyond the line
(Landau and Walfisz 1920, Fröberg 1968) due to the clustering of singular points along the imaginary axis arising from the nontrivial zeros of the Riemann zeta function on the critical line
.
As illustrated in the left figure above (where the real part is indicated in red and the imaginary part in yellow), the function has singular points along the real axis for
where
runs through all positive integers without a square factor. For
close to 1,
has the expansion
![]() |
(3) |
where
and
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
(OEIS A143524), where
is the Möbius function and
is the Riemann zeta function (Fröberg 1968).

The prime zeta function is plotted above for
and
(Fröberg 1968).


The prime zeta function is illustrated above in the complex plane.
The prime zeta function can be expressed in terms of the Riemann zeta function by
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
Inverting then gives
![]() |
(10) |
(Glaisher 1891, Fröberg 1968, Cohen 2000).
The prime zeta function is implemented in the Wolfram Language as PrimeZetaP[s].
The Dirichlet generating function of the composite numbers
is given by
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
, The analog of the harmonic series, diverges, but convergence of the series for
is quadratic. However, dropping the initial term from the sum for
(and adding the Euler-Mascheroni constant
to the result) gives simply the Mertens constant
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
(OEIS A077761).
Artin's constant
is connected with
by
![]() |
(16) |
where
is a Lucas number (Ribenboim 1998, Gourdon and Sebah).
The values of
for the first few integers
starting with two are given in the following table. Merrifield (1881) computed
for
up to 35 to 15 digits, and Liénard (1948) computed
up to
to 50 digits (Ribenboim 1996). Gourdon and Sebah give values to 60 digits for
.
![]() |
OEIS | ![]() |
| 2 | A085548 | 0.452247 |
| 3 | A085541 | 0.174763 |
| 4 | A085964 | 0.0769931 |
| 5 | A085965 | 0.035755 |
| 6 | A085966 | 0.0170701 |
| 7 | A085967 | 0.00828383 |
| 8 | A085968 | 0.00406141 |
| 9 | A085969 | 0.00200447 |
| 10 | 0.000993604 |

According to Fröberg (1968), very little is known about the roots
. The plots above show the positions of zeros (left figure) and contours of zero real (red) and imaginary (blue) parts in a portion of the complex plane, with roots indicated as black dots (right figure).
REFERENCES:
Cohen, H. "High Precision Computation of Hardy-Littlewood Constants." Preprint. http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.
Cohen, H. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.
Dahlquist, G. "On the Analytic Continuation of Eulerian Products." Arkiv för Math. 1, 533-554, 1951.
Davis, H. T. Tables of the Higher Mathematical Functions, Vol. 2. Bloomington, IN: Principia Press, p. 249, 1933.
Fröberg, C.-E. "On the Prime Zeta Function." BIT 8, 187-202, 1968.
Glaisher, J. W. L. "On the Sums of Inverse Powers of the Prime Numbers." Quart. J. Math. 25, 347-362, 1891.
Gourdon, X. and Sebah, P. "Some Constants from Number Theory." http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 355-356, 1979.
Haselgrove, C. B. and Miller, J. C. P. "Tables of the Riemann Zeta Function." Royal Society Mathematical Tables, Vol. 6. Cambridge, England: Cambridge University Press, p. 58, 1960.
Landau, E. and Walfisz, A. "Über die Nichfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen." Rend. Circ. Math. Palermo 44, 82-86, 1920.
Liénard, R. Tables fondamentales à 50 décimales des sommes
,
,
. Paris: Centre de Docum. Univ., 1948.
Merrifield, C. W. "The Sums of the Series of Reciprocals of the Prime Numbers and of Their Powers." Proc. Roy. Soc. London 33, 4-10, 1881.
Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is
." Preprint IHES/M/03/34. May 2003. http://inc.web.ihes.fr/prepub/PREPRINTS/M03/Resu/resu-M03-34.html.
Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is
." Commun. Math. Phys. 277, 69-81, 2008.
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.
Sloane, N. J. A. Sequences A077761, A085541, A085548, A085964, A085965, A085966, A085967, A085968, A085969, and A143524 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية










![ln[zeta(s)]](https://mathworld.wolfram.com/images/equations/PrimeZetaFunction/Inline27.gif)











![P(s)=sum_(k=1)^infty(mu(k))/kln[zeta(ks)]](https://mathworld.wolfram.com/images/equations/PrimeZetaFunction/NumberedEquation4.gif)











![gamma+sum_(m=2)^(infty)(mu(m))/mln[zeta(m)]](https://mathworld.wolfram.com/images/equations/PrimeZetaFunction/Inline55.gif)






قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)