Schnirelmann,s Theorem					
				 
				
					
						
						 المؤلف:  
						Khinchin, A. Y.					
					
						
						 المصدر:  
						"The Landau-Schnirelmann Hypothesis and Mann,s Theorem." Ch. 2 in Three Pearls of Number Theory. New York: Dover					
					
						
						 الجزء والصفحة:  
						pp. 18-36					
					
					
						
						11-10-2020
					
					
						
						1079					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Schnirelmann's Theorem
There exists a positive integer 
 such that every sufficiently large integer is the sum of at most 
 primes. It follows that there exists a positive integer 
 such that every integer 
 is a sum of at most 
 primes. The smallest proven value of 
 is known as the Schnirelmann constant.
Schnirelmann's theorem can be proved using Mann's theorem, although Schnirelmann used the weaker inequality
where 
, 
{a+b:a in A,b in B}" src="https://mathworld.wolfram.com/images/equations/SchnirelmannsTheorem/Inline8.gif" style="height:15px; width:169px" />, and 
 is the Schnirelmann density. Let 
{0,1,2,3,5,...}" src="https://mathworld.wolfram.com/images/equations/SchnirelmannsTheorem/Inline10.gif" style="height:15px; width:125px" /> be the set of primes, together with 0 and 1, and let 
. Using a sophisticated version of the inclusion-exclusion principle, Schnirelmann showed that although 
, 
. By repeated applications of Mann's theorem, the sum of 
 copies of 
 satisfies 
{1,ksigma(Q)}" src="https://mathworld.wolfram.com/images/equations/SchnirelmannsTheorem/Inline16.gif" style="height:15px; width:216px" />. Thus, if 
, the sum of 
 copies of 
 has Schnirelmann density 1, and so contains all positive integers.
REFERENCES:
Khinchin, A. Y. "The Landau-Schnirelmann Hypothesis and Mann's Theorem." Ch. 2 in Three Pearls of Number Theory. New York: Dover, pp. 18-36, 1998.
				
				
					
					
					 الاكثر قراءة في  نظرية الاعداد					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة