تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Schnirelmann Constant
المؤلف:
Klimov, K. I
المصدر:
Naucn. Trudy Kuibysev Gos. Ped. Inst. 158
الجزء والصفحة:
...
5-10-2020
1274
Schnirelmann Constant
The constant in Schnirelmann's theorem such that every integer
is a sum of at most
primes. Of course, by Vinogradov's theorem, it is known that 4 primes suffice for all sufficiently large numbers, but this constant gives a sufficient number for all numbers. The best current estimate is
(Ramaré 1995), and a summary of progress on upper bounds for
is summarized in the following table.
![]() |
author |
7 | Ramaré (1995) |
19 | Riesel and Vaughan (1983) |
26 | Deshouillers (1977) |
27 | Vaughan (1977) |
55 | Klimov (1975) |
115 | Klimov et al. (1972) |
159 | Deshouillers (1973) |
REFERENCES:
Deshouillers, J.-M. No. 17 in "Amélioration de la constante de Šnirelman dans le probléme de Goldbach." Séminaire Delange-Pisot-Poitou (14e année: 1972/73). Théorie des nombres: Fascicule 2: Exposés 17 à 26, et Groupe d'étude. Paris: Secrétariat Mathématique, pp. 1-4, 1973.
Deshouillers, J.-M. "Sur la constante de Šnirel'man." No. G16 in Séminaire Delange-Pisot-Poitou, 17e année (1975/76). Théorie des nombres: Fascicule 2: Exposés 23 à 31 et Groupe d'étude. Paris: Secrétariat Math., pp. 1-6, 1977.
Klimov, K. I. Naucn. Trudy Kuibysev Gos. Ped. Inst. 158, 14-30, 1975.
Klimov, N. I.; Pil'tjaĭ, G. Z.; and Šeptickaja, T. A. "An Estimate of the Absolute Constant in the Goldbach-Šnirel'man Problem." In Issledovaniya po teorii chisel, Vyp. 4. [Studies in number theory, No. 4] (Ed. N. Lenskoĭ). Saratov: Izdat. Saratov. Univ., pp. 35-51, 1972.
Ramaré, O. "On Šnirel'man's Constant." Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22, 645-706, 1995.
Riesel, H. and Vaughan, R. C. "On Sums of Primes." Ark. Mat. 21, 46-74, 1983.
Vaughan, R. C. "On the Estimation of Schnirelman's Constant." J. reine angew. Math. 290, 93-108, 1977.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
