تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Near-Square Prime
المؤلف:
Minovic, P.
المصدر:
"Carol/Kynea New Records." primenumbers discussion group. Feb. 20, 2004a. https://groups.yahoo.com/group/primenumbers/message/14574.
الجزء والصفحة:
...
24-9-2020
722
Near-Square Prime
Call a number of the form a "near-square number."
Numbers of the form for
, 2, ... are
,
, 4, 11, 20, 31, 44, 59, 76, 95, ... (OEIS A028875). These are prime for indices
, 6, 8, 12, 14, 16, ... (OEIS A028876), corresponding to the primes 11, 31, 59, 139, 191, 251, 479, ... (OEIS A028877).
Numbers of the form for
, 2, ... are
, 0, 5, 12, 21, 32, 45, 60, ... (OEIS A028347). Since they can always be factored as
for
, the only (positive) prime of this form is 5.
Numbers of the form for
, 2, ... are
, 1, 6, 13, 22, 33, 46, 61, ... (OEIS A028872). These are prime for indices
, 8, 10, 14, 20, 26, 32, ... (OEIS A028873), corresponding to the primes 13, 61, 97, 193, 397, 673, ... (OEIS A028874).
Numbers of the form for
, 2, ... are
, 2, 7, 14, 23, 34, 47, 62, ... (OEIS A008865). These are prime for indices
, 3, 5, 7, 9, 13, 15, 19, 21, 27, ... (OEIS A028870), corresponding to the primes 2, 7, 23, 47, 79, 167, 223, 359, 439, ... (OEIS A028871). The "Kynea primes" (see below) are special cases of this form.
Numbers of the form for
, 2, ... are 0, 3, 8, 15, 24, 35, 48, 63, ... (OEIS A005563). Since they can always be factored as
for
, the only prime of this form is 3.
Numbers of the form for
, 2, ... are 2, 5, 10, 17, 26, 37, 50, ... (OEIS A002522). These are prime for indices
, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, ... (OEIS A005574), corresponding to the primes 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, ... (OEIS A002496). Fermat primes and generalized Fermat primes (with
) are of this form.
Numbers of the form for
, 2, ... are 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, ... (OEIS A059100). These are prime for indices
, 3, 9, 15, 21, 33, 39, 45, 57, 81, 99, ... (OEIS A067201), corresponding to the primes 3, 11, 83, 227, 443, 1091, 1523, 2027, ... (OEIS A056899).
Numbers of the form for
, 2, ... are 4, 7, 12, 19, 28, 39, 52, 67, ... (OEIS A117950). These are prime for indices
, 4, 8, 10, 14, 22, 28, 38, 50, 52, 62, ... (OEIS A049422), corresponding to the primes 7, 19, 67, 103, 199, 487, 787, 1447, ... (OEIS A049423).
Numbers of the form for
, 2, ... are 5, 8, 13, 20, 29, 40, 53, 68, 85, ... (OEIS A087475). These are prime for indices
, 3, 5, 7, 13, 15, 17, 27, ... (OEIS A007591), corresponding to the primes 5, 13, 29, 53, 173, 229, 293, 733, ... (OEIS A005473).
Numbers of the form for
, 2, ... are 6, 9, 14, 21, 30, 41, 54, 69, ... (OEIS A117951). These are prime for indices
, 12, 36, 48, 72, 78, 96, ... (OEIS A078402), corresponding to the primes 41, 149, 1301, 2309, 5189, ... (OEIS A056905).
For , 2, ..., the first few near-square numbers of the form
are
, 7, 47, 223, 959, 3967, ... (OEIS A093112). As of Jun. 2016, a total of 42 primes of this form (arbitrarily dubbed Carol primes by their original investigator in reference to a personal acquaintance) are known. The first few have indices 2, 3, 4, 6, 7, 10, 12, 15, 18, 19, 21, 25, 27, 55, 129, ... (OEIS A091515), corresponding to the primes 7, 47, 223, 3967, 16127, 1046527, ... (OEIS A091516). Some large primes of this form are summarized in the following table.
![]() |
decimal digits | discoverer |
![]() |
152916 | C. Emmanuel (May 7, 2007; Harvey; https://primes.utm.edu/primes/page.php?id=80384) |
![]() |
313290 | M. Rodenkirch (Apr. 14, 2016) |
![]() |
393441 | M. Rodenkirch (Jun. 15, 2016) |
For , 2, ..., the first few near-square numbers of the form
are 2, 7, 23, 79, 287, 1087, 4223, 16639, ... (OEIS A093069). As of Jun. 2016, a total of 50 primes of this form (arbitrarily dubbed Kynea primes by their original investigator in reference to a personal acquaintance) are known. The first few have indices 0, 1, 2, 3, 5, 8, 9, 12, 15, 17, 18, 21, ... (OEIS A091513) and are given by 2, 7, 23, 79, 1087, 66047, 263167, 16785407, ... (OEIS A091514). Some large primes of this form are summarized in the following table.
![]() |
decimal digits | discoverer |
![]() |
169553 | C. Emmanuel (October 2005); https://primes.utm.edu/primes/page.php?id=75878 |
![]() |
222510 | M. Rodenkirch (Feb. 2016) |
![]() |
226405 | M. Rodenkirch (Feb. 7, 2016) |
![]() |
266142 | M. Rodenkirch (Feb. 28, 2016) |
![]() |
374146 | M. Rodenkirch (May 30, 2016) |
![]() |
398250 | M. Rodenkirch (Jun. 19, 2016) |
REFERENCES:
Harvey, S. https://harvey563.tripod.com/Carol_Kynea.txt.
Minovic, P. "Carol/Kynea New Records." primenumbers discussion group. Feb. 20, 2004a. https://groups.yahoo.com/group/primenumbers/message/14574.
Minovic, P. "Re: Carol/Kynea New Records." primenumbers discussion group. Feb. 24, 2004b. https://groups.yahoo.com/group/primenumbers/message/14586.
Rodenkirch, M. "Carol and Kynea Prime Search." https://www.mersenneforum.org/rogue/ckps.html.
Sloane, N. J. A. Sequences A002496/M1506, A002522, A005563/M2720, A005574/M1010, A005473/M005473, A007591/M2416, A008865, A028347, A028870, A028871, A028872, A028873, A028874, A028875, A028876, A028877, A049422, A049423, A056899, A056905, A059100, A060867, A067201, A078402, A087475, A091513, A091514, A091515, A091516, A093069, A093112, A117950, and A117951 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
