

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Pollard rho Factorization Method
المؤلف:
Brent, R.
المصدر:
"An Improved Monte Carlo Factorization Algorithm." Nordisk Tidskrift for Informationsbehandlung (BIT) 20
الجزء والصفحة:
...
14-9-2020
1832
Pollard rho Factorization Method
A prime factorization algorithm also known as Pollard Monte Carlo factorization method. There are two aspects to the Pollard
factorization method. The first is the idea of iterating a formula until it falls into a cycle. Let
, where
is the number to be factored and
and
are its unknown prime factors. Iterating the formula
![]() |
(1) |
or almost any polynomial formula (an exception being
) for any initial value
will produce a sequence of number that eventually fall into a cycle. The expected time until the
s become cyclic and the expected length of the cycle are both proportional to
.
However, since
with
and
relatively prime, the Chinese remainder theorem guarantees that each value of
(mod
) corresponds uniquely to the pair of values (
),
). Furthermore, the sequence of
s follows exactly the same formula modulo
and
, i.e.,
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Therefore, the sequence (mod
) will fall into a much shorter cycle of length on the order of
. It can be directly verified that two values
and
have the same value (mod
), by computing
![]() |
(4) |
which is equal to
.
The second part of Pollard's method concerns detection of the fact that a sequence has become periodic. Pollard's suggestion was to use the idea attributed to Floyd of comparing
to
for all
. A different method is used in Brent's factorization method.
Under worst conditions, the Pollard
algorithm can be very slow.
REFERENCES:
Brent, R. "An Improved Monte Carlo Factorization Algorithm." Nordisk Tidskrift for Informationsbehandlung (BIT) 20, 176-184, 1980.
Brent, R. P. "Some Integer Factorization Algorithms Using Elliptic Curves." Austral. Comp. Sci. Comm. 8, 149-163, 1986.
Bressoud, D. M. Factorization and Primality Testing. New York: Springer-Verlag, pp. 61-67, 1989.
Eldershaw, C. and Brent, R. P. "Factorization of Large Integers on Some Vector and Parallel Computers."
Montgomery, P. L. "Speeding the Pollard and Elliptic Curve Methods of Factorization." Math. Comput. 48, 243-264, 1987.
Pollard, J. M. "A Monte Carlo Method for Factorization." Nordisk Tidskrift for Informationsbehandlung (BIT) 15, 331-334, 1975.
Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 83 and 102-103, 1991.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية




![[x_n (mod p)]^2+a (mod p)](https://mathworld.wolfram.com/images/equations/PollardRhoFactorizationMethod/Inline22.gif)


![[x_n (mod q)]^2+a (mod q).](https://mathworld.wolfram.com/images/equations/PollardRhoFactorizationMethod/Inline25.gif)

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)