تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Prime Spiral
المؤلف:
Clarke, A. C.
المصدر:
The City and the Stars. New York: Harcourt, Brace, 1956.
الجزء والصفحة:
...
3-9-2020
2439
Prime Spiral
The prime spiral, also known as Ulam's spiral, is a plot in which the positive integers are arranged in a spiral (left figure), with primes indicated in some way along the spiral. In the right plot above, primes are indicated in red and composites are indicated in yellow.
The plot above shows a larger part of the spiral in which the primes are shown as dots.
Unexpected patterns of diagonal lines are apparent in such a plot, as illustrated in the above grid. This construction was first made by Polish-American mathematician Stanislaw Ulam (1909-1986) in 1963 while doodling during a boring talk at a scientific meeting. While drawing a grid of lines, he decided to number the intersections according to a spiral pattern, and then began circling the numbers in the spiral that were primes. Surprisingly, the circled primes appeared to fall along a number of diagonal straight lines or, in Ulam's slightly more formal prose, it "appears to exhibit a strongly nonrandom appearance" (Stein et al. 1964). The spiral appeared on the March 1964 cover of Scientific American magazine.
Remarkably, noted science fiction author Arthur C. Clarke described the prime spiral in his novel The City and the Stars (1956, Ch. 6, p. 54). Clarke wrote, "Jeserac sat motionless within a whirlpool of numbers. The first thousand primes.... Jeserac was no mathematician, though sometimes he liked to believe he was. All he could do was to search among the infinite array of primes for special relationships and rules which more talented men might incorporate in general laws. He could find how numbers behaved, but he could not explain why. It was his pleasure to hack his way through the arithmetical jungle, and sometimes he discovered wonders that more skillful explorers had missed. He set up the matrix of all possible integers, and started his computer stringing the primes across its surface as beads might be arranged at the intersections of a mesh."
However, Clarke never actually performed this thought experiment (pers. comm. to E. Pegg Jr., May 27, 2002), thus leaving discovery of the unexpected properties of the prime spiral to Ulam seven years later.
M. Charpentier has written a PostScript file which can be downloaded to a printer and draws a prime spiral.
A hexagonal prime spiral can also be constructed, as illustrated above (Abbott 2005).
REFERENCES:
Abbott, P. (Ed.). "Mathematica One-Liners: Spiral on an Integer Lattice." Mathematica J. 1, 39, 1990.
Abbott, P. "Re: Hexagonal Spiral." https://forums.wolfram.com/mathgroup/archive/2005/May/msg00336.html. May 11, 2005.
Charpentier, M. "Prime Numbers in PostScript." https://www.cs.unh.edu/~charpov/Programming/PostScript-primes/.
Clarke, A. C. The City and the Stars. New York: Harcourt, Brace, 1956.
Dewdney, A. K. "Computer Recreations: How to Pan for Primes in Numerical Gravel." Sci. Amer. 259, 120-123, July 1988.
Ellerstein, S. M. "The Pronic Renaissance: The Ulam Square Spiral (Modified)." J. Recr. Math. 29, 188-189, 1998.
Gardner, M. "Mathematical Recreations: The Remarkable Lore of the Prime Number." Sci. Amer. 210, 120-128, Mar. 1964.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, pp. 80-83 and 88-89, 1984.
Goddard, T. "Ulam Spiral." https://d4maths.lowtech.org/mirage/ulam.htm.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, pp. 105-109, 1998.
Lane, C. "Prime Spiral." https://cdl.best.vwh.net/Java/PrimeSpiralApplet.html.
Leatherland, A. J. F. "The Mysterious Prime Spiral Phenomenon." https://yoyo.cc.monash.edu.au/~bunyip/primes/#spiral.
Morin, D. "Le Village Premier." https://platon.lacitec.on.ca/~dmorin/applet/village/.
Peterson, I. "MathTrek: Prime Spirals." May 4, 2002. https://www.sciencenews.org/20020504/mathtrek.asp.
Pickover, C. "A Prime Plaid." In Computers and the Imagination: Visual Adventures Beyond the Edge. New York: St. Martin's, 1991.
Stein, M. and Ulam, S. M. "An Observation on the Distribution of Primes." Amer. Math. Monthly 74, 43-44, 1967.
Stein, M. L.; Ulam, S. M.; and Wells, M. B. "A Visual Display of Some Properties of the Distribution of Primes." Amer. Math. Monthly 71, 516-520, 1964.
الاكثر قراءة في نظرية الاعداد
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
